欢迎来到天天文库
浏览记录
ID:20386602
大小:25.50 KB
页数:5页
时间:2018-10-13
《用代入法解二元一次方程组》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、用代入法解二元一次方程组 教学建议 一、重点、难点分析 本节的教学重点是使学生学会用代入法.教学难点在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便. 解二元一次方程组的关键在于消元,即将“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解. 二、知识结构 三、教法建议 1.关于检验方程组的解的问题.教材指出:“检验时,需将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左
2、、右两边是不是相等.”教学时要强调“原方程组”和“每一个”这两点.检验的作用,一是使学生进一步明确代入法是求方程组的解的一种基本方法,通过代入消元的确可以求得方程组的解二是进一步巩固二元一次方程组的解的概念,强调 这一对数值才是原方程组的解,并且它们必须使两个方程左、右两边的值都相等;三是因为我们没有用方程组的同解原理而是用代换(等式的传递)来解方程组的,所以有必要检验求出来的这一对数值是不是原方程组的解;四是为了杜绝变形和计算时发生的错误.检验可以口算或在草稿纸上演算,教科书中没有写出. 2.教学时,应结合具体的例子指出这里解二
3、元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性. 3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误. 一、素质教育目标 (一)知识教学点 1.掌握用代入法解二元一次方程组的步骤. 2.熟练运用代入法解简单的二元一次方程组. (二)能力训
4、练点 1.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形. 2.训练学生的运算技巧,养成检验的习惯. (三)德育渗透点 消元,化未知为已知的数学思想. (四)美育渗透点 通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美. 二、学法引导 1.教学方法:引导发现法、练习法,尝试指导法. 2.学生学法:在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法. 三、重点、难点、疑点及解决办法 (-
5、)重点 使学生会用代入法解二元一次方程组. (二)难点 灵活运用代入法的技巧. (三)疑点 如何“消元”,把“二元”转化为“一元”. (四)解决办法 一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形: 四、课时安排 一课时. 五、教具学具准备 电脑或投影仪、自制胶片. 六、师生互动活动设计 1.教师设问怎样用一个未知量表示另一个未知量,并比较哪种表示形式更简单,如等. 2.通过课本中香蕉、苹果的应用问题,引导学生列出一元一次方程或二元一次方程组,并通过比较、尝试,探
6、索出化二元为一元的解方程组的方法. 3.再通过比较、尝试,探索出选一个系数较简单的方程变形,通过代入法求方程组解的办法更简便,并寻找出求解的规律. 七、教学步骤 (-)明确目标 本节课我们将学习用代入法求二元一次方程组的解. (二)整体感知 从复习用一个未知量表达另一个未知量的方法,从而导入运用代入法化二元为一元方程的求解过程,即利用代入消元法求二元一次方程组的解的办法. (三)教学步骤 1.创设情境,复习导入 (1)已知方程,先用含的代数式表示,再用含的代数式表示.并比较哪一种形式比较简单. (2)选择题: 二元一
7、次方程组的解是 a. b. c. d. 【教法说明】第(1)题为用代入法解二元一次方程组打下基础;第(2)题既复习了上节课的重点,又成为导入新课的材料. 通过上节课的学习,我们会检验一对数值是否为某个二元一次方程组的解.那么,已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们就来学习. 这样导入,可以激发学生的求知欲. 2.探索新知,讲授新课 香蕉的售价为5元/千克
此文档下载收益归作者所有