欢迎来到天天文库
浏览记录
ID:38456737
大小:160.00 KB
页数:4页
时间:2019-06-13
《二次函数 回顾与思考(2)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第二章二次函数《回顾与思考》(2)一、教学目标 能利用二次函数解决实际问题,如:最大利润问题、最大高度问题、最大面积问题等.会通过建立坐标系来解决实际问题二、教学重点和难点重点:能利用二次函数解决实际问题 难点:能利用二次函数解决实际问题三、教学过程(一)最大值问题(1)最大高度问题;(2)最大利润问题;(3)最大面积问题例1:最大高度问题竖直向上发射物体的h(m)满足关系式y=-5t2+v0t,其中t(s)是物体运动的时间,v0(m/s)是物体被发射时的速度.某公园计划设计园内喷泉,喷水的最大高度要求达到15m,那么喷水的速度应该达到多少?(结果精确
2、到0.01m/s).例2:最大利润问题某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40~70元之间.市场调查发现:若每箱发50元销售,平均每天可售出90箱,价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.(1)写出售价x(元/箱)与每天所得利润w(元)之间的函数关系式;(2)每箱定价多少元时,才能使平均每天的利润最大?最大利润是多少?例3:最大面积问题一根铝合金型材长为6m,用它制作一个“日”字型的窗框,如果恰好用完整条铝合金型材,那么窗架的长、宽各为多少米时,窗架的面积最大?(二)需建立坐标系问题例
3、3:一座抛物线型拱桥如图所示,桥下水面宽度是4m,拱高是2m.当水面下降1m后,水面的宽度是多少?(结果精确到0.1m)(三)课下作业1.已知二次函数(≠0)与一次函数(≠0)的图像交于点A(-2,4),B(8,2),如图所示,则能使成立的的取值范围是()A.B.C.D.或2.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=-(x-4)2+3,由此可知铅球推出的距离是____m. 3.如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,-3),点P是直线
4、BC下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO,PC,并将△POC沿y轴对折,得到四边形.是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.4.如图,在平面直角坐标系中,点的坐标分别为点在轴上.已知某二次函数的图象经过、、三点,且它的对称轴为直线点为直线下方的二次函数图象上的一个动点(点与、不重合),过点作轴的平行线交于点(1)求该二次函数的解析式;(2)若设点的横坐标为用含的代数式表示线段的长.(3)
5、求面积的最大值,并求此时点的坐标.xyBFOACPx=1
此文档下载收益归作者所有