欢迎来到天天文库
浏览记录
ID:38454403
大小:19.74 KB
页数:3页
时间:2019-06-13
《平行四边形的判定(1))》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时计划:总第(27)课时---授课日期2017年3月18日---星期-六--班级803课题18.1.2(一)平行四边形的判定课型新授课教学目标1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.教学重点平行四边形的判定方法及应用.教学难点平行四边形的判定定理与性质定理的灵活应用教学方法探究式教学法教具白板教学过程及板书设计:1.欣赏图片、提出问题.展示图片,提出问题,在刚才演示的图片中,有
2、哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具——硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:判定方法1两组对边分
3、别相等的四边形是平行四边形。判定方法2对角线互相平分的四边形是平行四边形。五、例习题分析例1(教材P96例3)已知:如图ABCD的对角线AC、BD交于课堂生成随记点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.例2(补充)已知:如图,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B
4、′C′A′各边的中点.证明:(1)∵A′B′∥BA,C′B′∥BC,∴四边形ABCB′是平行四边形.∴ ∠ABC=∠B′(平行四边形的对角相等).同理∠CAB=∠A′,∠BCA=∠C′.(2)由(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C是平行四边形.∴AB=B′C,AB=A′C(平行四边形的对边相等).∴B′C=A′C.同理 B′A=C′A,A′B=C′B.∴ △ABC的顶点A、B、C分别是△B′C′A′的边B′C′、C′A′、A′B′的中点.例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成
5、一个六边形.你能在图中找出所有的平行四边形吗?并说说你的理由.解:有6个平行四边形,分别是ABOF,ABCO,BCDO,CDEO,DEFO,EFAO.理由是:因为正△ABO≌正△AOF,所以AB=BO,OF=FA.根据“两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形.其它五个同理.教学后记判断方法比较简单,单一应用学生把握较好,但涉及综合应用,如何选择较好的方法证明,提高数形结合的能力。
此文档下载收益归作者所有