高等数学课件--D103三重积分

高等数学课件--D103三重积分

ID:38386135

大小:1.30 MB

页数:27页

时间:2019-06-11

高等数学课件--D103三重积分_第1页
高等数学课件--D103三重积分_第2页
高等数学课件--D103三重积分_第3页
高等数学课件--D103三重积分_第4页
高等数学课件--D103三重积分_第5页
资源描述:

《高等数学课件--D103三重积分》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第三节一、三重积分的概念二、三重积分的计算三重积分第十章9/5/2021同济版高等数学课件一、三重积分的概念类似二重积分解决问题的思想,采用引例:设在空间有限闭区域内分布着某种不均匀的物质,求分布在内的物质的可得“大化小,常代变,近似和,求极限”解决方法:质量M.密度函数为9/5/2021同济版高等数学课件定义.设存在,称为体积元素,若对作任意分割:任意取点则称此极限为函数在上的三重积分.在直角坐标系下常写作三重积分的性质与二重积分相似.性质:例如下列“乘中值定理.在有界闭域上连续,则存在使得V为的体积,积和式”极限记作9/5/2021同济版高等数学课件二

2、、三重积分的计算1.利用直角坐标计算三重积分方法1.投影法(“先一后二”)方法2.截面法(“先二后一”)方法3.三次积分法先假设连续函数并将它看作某物体通过计算该物体的质量引出下列各计算最后,推广到一般可积函数的积分计算.的密度函数,方法:9/5/2021同济版高等数学课件方法1.投影法(“先一后二”)该物体的质量为细长柱体微元的质量为微元线密度≈记作9/5/2021同济版高等数学课件方法2.截面法(“先二后一”)为底,dz为高的柱形薄片质量为该物体的质量为面密度≈记作9/5/2021同济版高等数学课件投影法方法3.三次积分法设区域利用投影法结果,把二重积分化成二次积分

3、即得:9/5/2021同济版高等数学课件当被积函数在积分域上变号时,因为均为为非负函数根据重积分性质仍可用前面介绍的方法计算.9/5/2021同济版高等数学课件小结:三重积分的计算方法方法1.“先一后二”方法2.“先二后一”方法3.“三次积分”具体计算时应根据三种方法(包含12种形式)各有特点,被积函数及积分域的特点灵活选择.9/5/2021同济版高等数学课件其中为三个坐标例1.计算三重积分所围成的闭区域.解:面及平面9/5/2021同济版高等数学课件例2.计算三重积分解:用“先二后一”9/5/2021同济版高等数学课件2.利用柱坐标计算三重积分就称为点M的柱坐标.直

4、角坐标与柱面坐标的关系:坐标面分别为圆柱面半平面平面9/5/2021同济版高等数学课件如图所示,在柱面坐标系中体积元素为因此其中适用范围:1)积分域表面用柱面坐标表示时方程简单;2)被积函数用柱面坐标表示时变量互相分离.9/5/2021同济版高等数学课件其中为例3.计算三重积分所解:在柱面坐标系下及平面由柱面围成半圆柱体.9/5/2021同济版高等数学课件例4.计算三重积分解:在柱面坐标系下所围成.与平面其中由抛物面原式=9/5/2021同济版高等数学课件3.利用球坐标计算三重积分就称为点M的球坐标.直角坐标与球面坐标的关系坐标面分别为球面半平面锥面9/5/2021

5、同济版高等数学课件如图所示,在球面坐标系中体积元素为因此有其中适用范围:1)积分域表面用球面坐标表示时方程简单;2)被积函数用球面坐标表示时变量互相分离.9/5/2021同济版高等数学课件例5.计算三重积分解:在球面坐标系下所围立体.其中与球面9/5/2021同济版高等数学课件例6.求曲面所围立体体积.解:由曲面方程可知,立体位于xOy面上部,利用对称性,所求立体体积为yOz面对称,并与xOy面相切,故在球坐标系下所围立体为且关于xOz9/5/2021同济版高等数学课件内容小结积分区域多由坐标面被积函数形式简洁,或坐标系体积元素适用情况直角坐标系柱面坐标系球面坐标系*

6、说明:三重积分也有类似二重积分的换元积分公式:对应雅可比行列式为变量可分离.围成;9/5/2021同济版高等数学课件1.将用三次积分表示,其中由所提示:思考与练习六个平面围成,9/5/2021同济版高等数学课件2.设计算提示:利用对称性原式=奇函数9/5/2021同济版高等数学课件3.设由锥面和球面所围成,计算提示:利用对称性用球坐标9/5/2021同济版高等数学课件作业P1621(2),(3),(4);4;5;7;8;9(2);*10(2);11(1),*(4)第四节9/5/2021同济版高等数学课件备用题1.计算所围成.其中由分析:若用“先二后一”,则有计算较

7、繁!采用“三次积分”较好.9/5/2021同济版高等数学课件所围,故可思考:若被积函数为f(y)时,如何计算简便?表为解:9/5/2021同济版高等数学课件2.计算其中解:利用对称性9/5/2021同济版高等数学课件

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。