欢迎来到天天文库
浏览记录
ID:36852581
大小:602.50 KB
页数:15页
时间:2019-05-10
《《简单的线性规划问题》课件2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.3.2简单的线性规划引入新课1.某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂最多可从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有的日生产安排是什么?(1)设甲、乙两种产品分别生产x、y件,由已知条件可得二元一次不等式组:(2)将上述不等式组表示成平面上的区域,(3)若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?设生产甲产品x乙产品y件时,工厂获得的利润为z,则
2、z=2x+3y.上述问题就转化为:当x、y满足不等式※并且为非负整数时,z的最大值是多少?引入新课1.上述问题中,不等式组是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又叫线性约束条件.线性约束条件除了用一次不等式表示外,有时也用一次方程表示.讲授新课2.欲求最大值或最小值的函数z=2x+3y叫做目标函数.由于z=2x+y又是x、y的一次解析式,所以又叫线性目标函数.讲授新课3.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.4.满足线性
3、约束条件的解(x,y)叫做可行解.5.由所有可行解组成的集合叫做可行域.6.使目标函数取得最大值或最小值的可行解,它们都叫做这个问题的最优解.讲授新课例题分析例1.设z=2x+y,式中变量x、y满足下列条件:求z的最大值和最小值.yxOCAB例题分析我们先画出不等式组(1)表示的平面区域,如图中△ABC内部且包括边界,点(0,0)不在这个三角形区域内,当x=0,y=0时,z=2x+y=0,点(0,0)在直线l0:2x+y=0上.42246yxOCAB例题分析l0可知,当l在l0的右上方时,直线l上的
4、点(x,y)满足2x+y>0.即z>0,而且l往右平移时,z随之增大,在经过不等式组(1)表示的三角形区域内的点且平行于l的直线中,42246yxOCAB作一组和l0平行的直线l:2x+y=z,z∈R.l0例题分析以经过点A(5,2)的直线l2所对应的z最大,以经过点B(1,1)的直线l1所对应的z最小.所以,zmax=2×5+2=12,zmin=2×1+1=3.42246yxOCABl2例题分析l1例2.解下列线性规划问题:求z=2x+y的最大值和最小值,使式中的x、y满足约束条件例题分析作出直线
5、l0:2x+y=0,再将直线平移,当l0平行线l1过B点时,可使z=2x+y达到最小值,当l0平行线l2过C点时,可使z=2x+y达到最大值.解:先作出可行域,见图中△ABC表示的区域,且求得zmin=2×(1)+(1)=3,zmax=2×2+(1)=3.yxO11例题分析l0l1l2解答线性规划问题的步骤:第一步:根据约束条件画出可行域;第二步:令z=0,画直线l0;第三步:观察,分析,平移直线l0,从而找到最优解;第四步:求出目标函数的最大值或最小值.课堂小结谢谢观看!
此文档下载收益归作者所有