欢迎来到天天文库
浏览记录
ID:36196628
大小:6.76 MB
页数:22页
时间:2019-05-07
《精品解析:【市级联考】重庆市2019届高三学业质量调研抽测4月二诊理科数学试题(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高2019届高三学生学业调研抽测(第二次)理科数学试题卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知为虚数单位,复数满足,则()A.B.C.1D.【答案】C【解析】【分析】根据已知求解出,再计算出模长.【详解】则本题正确选项:【点睛】本题考查复数模长的求解,关键是利用复数的运算求得,属于基础题.2.已知集合,,则()A.B.C.D.【答案】A【解析】【分析】分别求解出两个集合,根据交集定义求得结果.【详解】则本题正确选项:【点睛】本题考查集合运算中的交集运算,关键在于能够利用指数函数单调性和对数函数的定义域求解出两个集合,属于基础题.3.设
2、,,,则的大小关系为()A.B.C.D.【答案】D【解析】【分析】根据指数函数单调性可得,再利用作为临界值可得,,从而得到三者之间的关系.【详解】可知:本题正确选项:【点睛】本题考查指对数混合的大小比较问题,关键是能够利用函数的单调性进行判断,属于基础题.4.设等比数列的前项和为,已知,且与的等差中项为20,则()A.127B.64C.63D.32【答案】C【解析】【分析】先求出等比数列的首项和公比,然后计算即可.【详解】解:因为,所以因为与的等差中项为,,所以,即,所以故选:C.【点睛】本题考查了等比数列基本量的计算,属于基础题.5.已知为两条不同的直线,为两个不同
3、的平面,则下列命题中正确的是()A.若,,则B.若,,且,则C.若,,且,,则D.若直线与平面所成角相等,则【答案】B【解析】【分析】结合空间中平行于垂直的判定与性质定理,逐个选项分析排除即可.【详解】解:选项A中可能,A错误;选项C中没有说是相交直线,C错误;选项D中若相交,且都与平面平行,则直线与平面所成角相等,但不平行,D错误.故选:B.【点睛】本题考查了空间中点线面的位置关系,属于基础题.6.函数的图像大致为()A.B.C.D.【答案】C【解析】【分析】根据奇偶性可排除和两个选项,再根据时,的符号,可排除选项,从而得到正确结果.【详解】定义域为为定义在上的奇函
4、数,可排除和又,当时,,可排除本题正确选项:【点睛】本题考查函数图像的判断,解决此类问题的主要方法是利用奇偶性、特殊值、单调性来进行排除,通过排除法得到正确结果.7.运行如图所示的程序框图,则输出的值为()A.9B.10C.11D.12【答案】C【解析】【分析】将的变化规律整理为数列的形式,求解出数列的通项,根据求解出输出时的取值.【详解】将每次不同的取值看做一个数列则,,,…,则,则当时,;当时,即时,,输出结果本题正确选项:【点睛】本题考查利用循环结构的程序框图计算输出结果,由于循环次数较多,可以根据变化规律,利用数列的知识来进行求解.8.设函数的一条对称轴为直线
5、,将曲线向右平移个单位后得到曲线,则在下列区间中,函数为增函数的是()A.B.C.D.【答案】B【解析】【分析】将化简为,根据对称轴可求得;通过平移得到;依次代入各个选项,判断其单调性,从而得到结果.【详解】将代入可得:又,可得:当时,,不单调,可知错误;当时,,单调递增,可知正确;当时,,单调递减,可知错误;当时,,不单调,可知错误.本题正确选项:【点睛】本题考查的单调性问题,主要采用整体对应的方式来进行判断.关键是能够通过辅助角公式、对称轴方程、三角函数平移等知识准确求解出的解析式.9.某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学
6、生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为()A.B.C.D.【答案】A【解析】【分析】根据条件概率的计算公式,分别求解公式各个部分的概率,从而求得结果.【详解】设事件为“学生甲不是第一个出场,学生乙不是最后一个出场”;事件为“学生丙第一个出场”则,则本题正确选项:【点睛】本题考查条件概率的求解,关键是能够利用排列组合的知识求解出公式各个构成部分的概率.10.已知双曲线的一条渐近线方程为,左焦点为,当点在双曲线右支上,点在圆上运动时,则的最小值为()A.9B.7C.6D.5【答案】B【解析】【分析】根据渐近线方程求出双曲线方程,根据
7、定义可将问题转化为求解的最小值,由位置关系可知当与圆心共线时取最小值.【详解】由渐近线方程可知设双曲线右焦点为由双曲线定义可知:则则只需求的最小值即可得到的最小值设圆的圆心为,半径则本题正确选项:【点睛】本题考查双曲线中的最值问题,关键是能够利用双曲线的定义将问题进行转化,再根据圆外点到圆上点的距离的最值的求解方法得到所求最值.11.已知三棱锥各顶点均在球上,为球的直径,若,,三棱锥的体积为4,则球的表面积为()A.B.C.D.【答案】B【解析】【分析】求解出面积后,利用三棱锥的体积,构造方程,求解出点到底面的距离,从而可知的长度;利用正弦定理得到,
此文档下载收益归作者所有