欢迎来到天天文库
浏览记录
ID:36188933
大小:748.00 KB
页数:24页
时间:2019-05-07
《24.1.4_圆周角1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、圆周角回忆1.什么叫圆心角?.OAB顶点在圆心的角叫圆心角2.圆心角、弧、弦三个量之间关系的一个结论,这个结论是什么?在同圆(或等圆)中,如果圆心角、弧、弦有一组量相等,那么它们所对应的其余两个量都分别相等。探究.OA问题:将圆心角顶点向上移,直至与⊙O相交于点C?观察得到的∠ACB有什么特征?C顶点在圆上两边都与圆相交这样的角叫圆周角。B问题探讨:判断下列图形中所画的∠P是否为圆周角?并说明理由。PPPP不是是不是不是顶点不在圆上。顶点在圆上,两边和圆相交。两边不和圆相交。有一边和圆不相交。观察思考:在这个海洋馆里,人们可以通过其中的圆弧
2、形玻璃窗观看窗内的海洋动物.问题探讨:问题1如图:同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?用量角器量一下,有什么发现?问题解决:你能画出同弧所对的圆周角和圆心角吗?你能证明你的发现(即同弧所对的圆周角度数等于这条弧所对的圆心角的一半)吗?ABCOABCOABCO分析论证1.首先考虑一种特殊情况:当圆心(O)在圆周角(∠BAC)的一边(BA)上时,圆周角∠BAC与圆心角∠BOC的大小关系.∵OA=OC∴∠A=∠C又∠BOC=∠A+∠C∴∠BOC=2∠A即∠A=∠BOCABCO分
3、析论证你能证明第2种情况吗?ABCOD提示:作射线AO交⊙O于D。转化为第1种情况证明:由第1种情况得即∠BAC=∠BOC∠BAD=∠BOD∠CAD=∠COD∠BAD+∠CAD=∠BOD+∠COD分析论证你能证明第3种情况吗?证明:作射线AO交⊙O于D。由第1种情况得即∠BAC=∠BOC∠BAD=∠BOD∠CAD=∠COD∠CAD-∠BAD=∠COD-∠BODABCOD问题2如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(∠ADB和∠AEB)和同学乙的视角相同吗?相等。都等于∠BOC的一半。圆周角定理:在同圆或等圆中,同弧所对的圆周
4、角相等,都等于这条弧所对的圆心角的一半。练习:如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,这些角中哪些是相等的角?D12345678ABC∠1=∠4∠2=∠7∠3=∠6∠5=∠8解:问题解决:综上所述:我们得到:同弧所对的圆周角度数等于这条弧所对的圆心角的一半即∠BAC=∠BOCABCOABCOABCO思考2如图23.1.9,线段AB是⊙O的直径,点C是⊙O上任意一点(除点A、B),那么,∠ACB就是直径AB所对的圆周角.想想看,∠ACB会是怎么样的角?我们可以看到,OA=OB=OC,所以△AOC、△BO
5、C都是等腰三角形,因而∠OAC=∠OCA,∠OBC=∠OCB.又∠OAC+∠OBC+∠ACB=180°,所以∠ACB=∠OCA+∠OCB==90°.如图:半圆或直径所对的圆周角都相等,都等于90°(直角)。反过来也是成立的,即90°的圆周角所对的弦是圆的直径。结论2:归纳:在同圆或等圆中,如果①两个圆心角,②两个圆周角③两条弧,④两条弦,⑤两条弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等.归纳:(1)一个概念(圆周角)内容小结:(2)一个定理:(3)二个推论:同圆或等圆中,相等的圆周角所对弧相等.半圆或直径所对的圆周角是直角
6、;90°的圆周角所对的弦是直径。同圆或等圆中,同弧或等弧所对的圆周角相等,并且等于该弧所对的圆心角的一半;练一练1、如图,在⊙O中,∠ABC=50°,则∠AOC等于()A、50°;B、80°;C、90°;D、100°ACBOD2、如图,△ABC是等边三角形,动点P在圆周的劣弧AB上,且不与A、B重合,则∠BPC等于()A、30°;B、60°;C、90°;D、45°CABPB练一练3、如图,∠A=50°,∠AOC=120°BD是⊙O的直径,则∠AEB等于()A、70°;B、110°;C、90°;D、120°B4、如图,△ABC的顶点A、B、C
7、都在⊙O上,∠C=30°,AB=2,则⊙O的半径是。ACBODECABO解:连接OA、OB∵∠C=30°,∴∠AOB=60°又∵OA=OB,∴△AOB是等边三角形∴OA=OB=AB=2,即半径为2。2练一练5、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O于点F,点F不与点A重合。(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由。ACBDF·O∴△ABC是锐角三角形解:(1)AB=AC。证明:连接AD又∵DC=BD,∴AB=AC。(2)△ABC
8、是锐角三角形。由(1)知,∠B=∠C<90°连接BF,则∠AFB=90°,∴∠A<90°∵AB是直径,∴∠ADB=90°,圆内接多边形:所有顶点都在同一圆上的多边形。结论3:圆内
此文档下载收益归作者所有