资源描述:
《2年模拟§2.5函数的图象》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§2.5 函数的图象A组 2014—2015年模拟·基础题组限时:20分钟1.(2015湖北曾都一中等四校期中联考,4)已知a>0,b>0且ab=1,则函数f(x)=ax与g(x)=-logbx的图象可能是( )2.(2014湖北黄冈5月,5)函数f(x)=2x-tanx在-π2,π2上的图象大致为( ) 3.(2014北京丰台二模)函数y=log2(
2、x
3、+1)的图象大致是( )4.(2015北京海淀期中,10)已知函数y=2
4、x+a
5、的图象关于y轴对称
6、,则实数a的值是 . 5.(2015湖南岳阳一中第三次月考,15)设函数f(x)=x
7、x-a
8、的图象与函数g(x)=
9、x-1
10、的图象有三个不同的交点,则a的取值范围是 . B组 2014—2015年模拟·提升题组限时:30分钟1.(2015安徽“江淮十校”联考,3)函数f(x)=1-x2,
11、x
12、≤1,1
13、x
14、-1,
15、x
16、>1的大致图象是( )2.(2015山东菏泽期中,7)已知函数f(x)=1x-lnx-1,则y=f(x)的图象大致为( )3.(2014山东实验中学三模,7)下列
17、四个图中,函数y=10ln
18、x+1
19、x+1的图象可能是( )4.(2014陕西渭南4月,6)函数y=esinx(-π≤x≤π)的大致图象为( )5.(2014北京东城二模)对任意实数a,b定义运算“☉”:a☉b=b,a-b≥1,a,a-b<1,设f(x)=(x2-1)☉(4+x)+k,若函数f(x)的图象与x轴恰有三个交点,则k的取值范围是( ) A.(-2,1)B.[0,1]C.[-2,0)D.[-2,1)6.(2014河北石家庄二模)设方程10x=
20、l
21、g(-x)
22、的两个根分别为x1、x2,则( )A.x1x2<0B.x1x2=1C.x1x2>1D.00,∴a=1b.∴g(x)=-logbx=log1bx=logax,又f(x)=ax,∴函数f(x)与函数g(x)在各自的定义域上单调性相同.结合选项知选B.2.C 函数f(x)=2x-tanx为奇函数,所以图象关于原点对称,所以排除A、B.当x→π2时,f(x)→-∞,所以排除D,选C.3.B 易知函数y=log2(
23、
24、x
25、+1)是偶函数,当x≥0时,y=log2(x+1),先画出y=log2x(x≥1)的图象,再将图象向左平移1个单位,最后作出关于y轴对称的图象,故选B.4.答案 0解析 解法一:由于函数图象关于y轴对称,所以函数为偶函数,那么2
26、x+a
27、=2
28、-x+a
29、,可知
30、x+a
31、=
32、-x+a
33、,只有当a=0时,上式恒成立,故答案为0.解法二:易知函数y=2
34、x+a
35、的图象的对称轴为直线x=-a,故由题意知-a=0,∴a=0.5.答案 (1,+∞)解析 易知a=0时不满足题意.当a<0时,f(x)与g
36、(x)的图象如图①,不满足题意.当a>0时,f(x)与g(x)的图象如图②,据图②知要满足f(x),g(x)的图象有三个不同交点,则a>1.∴a的取值范围是(1,+∞).B组 2014—2015年模拟·提升题组1.B 由函数解析式可知f(x)为偶函数,又f(x)=1-x2(
37、x
38、≤1)的图象是以坐标原点O为圆心,1为半径的半圆(在x轴上方),当x>1时,f(x)=1x-1,此时f(x)单调递减,所以选B.2.A f(x)=1x-lnx-1的定义域为{x
39、x>0且x≠1},f'(x)=-1-1x(
40、x-lnx-1)2=1-xx(x-lnx-1)2,当00,f(x)是增函数,当x>1时,f'(x)<0,f(x)是减函数,故选A.3.C ∵y=10ln
41、x
42、x是奇函数,其图象向左平移一个单位得y=10ln
43、x+1
44、x+1的图象,∴y=10ln
45、x+1
46、x+1的图象关于(-1,0)中心对称,故排除A、D,当x<-2时,y<0恒成立,排除B.故选C.4.D 因为函数为非奇非偶函数,所以排除A、C.函数的导数为y'=esinx·cosx(-π≤x≤π),令y'=esinx·c
47、osx=0,得cosx=0,此时x=π2或x=-π2.当00,函数递增;当π248、lg(-