2019春八年级数学下册平行四边形的边角的特征教案新版新人教版

2019春八年级数学下册平行四边形的边角的特征教案新版新人教版

ID:36077897

大小:370.93 KB

页数:3页

时间:2019-05-05

2019春八年级数学下册平行四边形的边角的特征教案新版新人教版_第1页
2019春八年级数学下册平行四边形的边角的特征教案新版新人教版_第2页
2019春八年级数学下册平行四边形的边角的特征教案新版新人教版_第3页
资源描述:

《2019春八年级数学下册平行四边形的边角的特征教案新版新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、18.1 平行四边形18.1.1 平行四边形的性质第1课时 平行四边形的边、角的特征1.理解平行四边形的概念;(重点)2.掌握平行四边形边、角的性质;(重点)3.利用平行四边形边、角的性质解决问题.(难点)                  一、情境导入如图,平行四边形是我们常见的一种图形,它具有十分和谐的对称美.它是什么样的对称图形呢?它又具有哪些基本性质呢?二、合作探究探究点一:平行四边形的定义如图,在四边形ABCD中,∠B=∠D,∠1=∠2.求证:四边形ABCD是平行四边形.解析:根据三角形内角和定理求出∠DAC=∠ACB,根据平行线的判定推

2、出AD∥BC,AB∥CD,根据平行四边形的定义推出即可.证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC.∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.方法总结:平行四边形的定义既是平行四边形的性质,也是判断一个四边形是平行四边形的重要方法.探究点二:平行四边形的边、角特征【类型一】利用平行四边形的性质求边长如图,在△ABC中,AB=AC=5,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形,DE=2,则AD=________.解

3、析:∵四边形ADEF为平行四边形,∴DE=AF=2,AD=EF,AD∥EF,∴∠ACB=∠FEB.∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF.∴AD=BF,∵AB=5,∴BF=5+2=7,∴AD=7.方法总结:本题考查了平行四边形对边平行且相等的性质及等腰三角形的性质,熟练掌握各性质是解题的关键.【类型二】利用平行四边形的性质求角如图,在平行四边形ABCD中,CE⊥AB于E,若∠A=125°,则∠BCE的度数为(  )A.35°       B.55°C.25°       D.30°解析:∵四边形ABCD是平行四边形,∴AD∥

4、BC,∴∠A+∠B=180°.∵∠A=125°,∴∠B=55°.∵CE⊥AB于E,∴∠BEC=90°,∴∠BCE=90°-55°=35°.故选A.方法总结:平行四边形对角相等,邻角互补,并且已知一个角或已知两个邻角的关系,可求出其他角,所以利用该性质可以解决和角度有关的问题.【类型三】利用平行四边形的性质证明有关结论如图,点G、E、F分别在平行四边形ABCD的边AD、DC和BC上,DG=DC,CE=CF,点P是射线GC上一点,连接FP,EP.求证:FP=EP.解析:根据平行四边形的性质推出∠DGC=∠GCB,根据等腰三角形性质求出∠DGC=∠DCG

5、,推出∠DCG=∠GCB,根据“等角的补角相等”求出∠DCP=∠FCP,根据“SAS”证出△PCF≌△PCE即可得出结论.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DGC=∠GCB.∵DG=DC,∴∠DGC=∠DCG,∴∠DCG=∠GCB.∵∠DCG+∠ECP=180°,∠GCB+∠FCP=180°,∴∠ECP=∠FCP.在△PCF和△PCE中,∵∴△PCF≌△PCE(SAS),∴PF=PE.方法总结:平行四边形性质,等腰三角形的性质,全等三角形的性质和判定等常综合应用,利用平行四边形的性质可以解决一些相等的问题,在证明时应用较多.【类

6、型四】判断直线的位置关系如图,在平行四边形ABCD中,AB=2AD,M为AB的中点,连接DM、MC,试问直线DM和MC有何位置关系?请证明.解析:由AB=2AD,M是AB的中点的位置关系,可得出DM、CM分别是∠ADC与∠BCD的平分线.又由平行线的性质可得∠ADC+∠BCD=180°,进而可得出DM与MC的位置关系.解:DM与MC互相垂直.证明如下:∵M是AB的中点,∴AB=2AM.又∵AB=2AD,∴AM=AD,∴∠ADM=∠AMD.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠AMD=∠MDC,∴∠ADM=∠MDC,则∠MDC=∠ADC,同

7、理∠MCD=∠BCD.∵AD∥BC,∴∠ADC+∠DCB=180°,∴∠MDC+∠MCD=∠BCD+∠ADC=90°.∵∠MDC+∠MCD+∠DMC=180°,∴∠DMC=90°,∴DM与MC互相垂直.方法总结:根据平行四边形的性质,将已知条件转化到同一个三角形中,即可判断两条直线的关系.探究点三:两平行线间的距离如图,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l1∥l2,∴点E,F到l2之间的距离都相等,设为h.∴S△EGH=GH·h,S△

8、FGH=GH·h,∴S△EGH=S△FGH,∴S△EGH-S△GOH=S△FGH-S△GOH,∴△EGO的面积等于△FHO

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。