资源描述:
《【精英新课堂】2017年春八年级数学下册18.1.1第1课时平行四边形的边角的特征学案(.》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、18.1平行四边形18.1.1平行四边形的性质第1课时平行四边形的边角的特征【学习目标】1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.【学习重点】平行四边形的对边、对角性质的探究与运用.【学习难点】情景导入生成问题运用性质解决一些具体问题.旧知回顾:利用多媒体展示图片:从以上图形屮我们能发现哪些几何图形?你能给平行四边形下定义吗?自学互研生成能力知识模块一平形四边形的定义【自主探究】阅读教材Pn完成下面的内容:1.
2、两组对边分别空的四边形叫做平行四边形,平行四边形ABCD记作“口ABCD”.2.如图,两张对边平行的纸条,随意交叉叠在一起,转动其中一张,重合的部分构成一个四边形,这个四边形是平行I丿L
3、边形.【合作探究】如图,在四边形ABCD屮,ZB=ZD,Z1=Z2.求证:卩4边形ABCD是平行四边形.证明:VZ1+ZB+ZACB=18O°,Z1=Z2,ZDAC=ZACB,・AD/7BC.VZ1=Z2,AABCD,.・.四边形ABCD是平行四边形.知识模块二平行四边形的边、角特征【自主探究】阅读教材凸~2,完成下面的内容:1.平行四边形的对边相等,对角相等,邻角互补•2
4、.在口ABCD屮,AB=5cm,ZA=55°,则CD=5cm,ZB=125°,ZC=55°,ZD=125°.【合作探究】如图,点G、E、F分别在平行四边形ABCD的边AD、DC和BC上,DG=DC,CE=CF,点P是射线GC上一点,连接FP,EP・求证:FP=EP.证明:・・•四边形ABCD是平行四边形,・・・AD〃BC,・・・ZDGC=ZGCB.・.・DG=DC,.ZDGC=ZDCG,AZDCG=ZGCB.VZDCG+ZDCP=180°,ZGCB+ZFCP=180°,・・・ZDCP=ZFCP.在ZPCF和APCE屮,CE=CF,•・・{ZFCP=ZDC
5、P,、CP=CP,•••△PCF竺△PCE(9b),APF=PE.知识模块三两平行线间的距离【自主探究】阅读教材几2曲,完成下面的内容:1.夹在两条平行线间的平行线段相等、平行线间的距离相等.BDCAGli2.如图,直线b//l2,点A、E在h上,点B、C、F在L上,AD、EG分别是AABC和ACEF的高,则AD=EG.(选填“〉”“=”或“V”)【合作探究】如图,在平行四边形ABCD屮,AB=2AD,M为AB的屮点,连接DM、MC,试问直线DM和MC有何位置关系?请证明.解:DM与MC互相垂直.证明如下:・・・M是AB的中点,・・・AB=2AM.•・•又A
6、B=2AD,AAM=AD,AZADM=ZAMD.・・•四边形ABCD是平行边形,・・・AB〃CD,.ZAMD=ZMDC,・•・ZADM=ZMDC,即ZMDC=^ZADC,同理ZMCD=
7、ZBCD.VAD/7BC,.,.ZADC+ZDCB=180°,AZMDC+ZMCD=
8、ZADC+
9、ZBCD=9O°.・.・ZMDC+ZMCD+ZDMC=180°,・・・ZDMC=90°,・・・DM与MC互相垂直.交流展示生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到小黑板上,再一次通过
10、小组I'可就上述疑难问题相互解疑.2.各小组由小组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一平行四边形的定义知识模块二平行四边形的边、角特征知识模块三两平行线I'可的距离检测反馈达成目标【当堂检测】1.如图,点P在平行四边形ABCD内,过点P作EF〃BC,GH〃AB,则图屮共有空个平行四边形.2.在平行四边形ABCD屮,AD=4cm,AB=2cm,则平行四边形ABCD的周长等于(A)A.12cmB.8cmC.6cmD.4cm【课后检测】见学生用书课后反思查漏补缺1.收获:2.存在困惑: