12.3.1等腰三角形的性质课件

12.3.1等腰三角形的性质课件

ID:36068087

大小:1.03 MB

页数:19页

时间:2019-05-04

12.3.1等腰三角形的性质课件_第1页
12.3.1等腰三角形的性质课件_第2页
12.3.1等腰三角形的性质课件_第3页
12.3.1等腰三角形的性质课件_第4页
12.3.1等腰三角形的性质课件_第5页
资源描述:

《12.3.1等腰三角形的性质课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、12.3.1等腰三角形(1)蜀河初中:陈进霞定义:两条边相等的三角形叫做等腰三角形。边:等腰三角形中,相等的两条边叫做腰,腰腰另一条边叫做底边.底腰腰底相关概念:角:等腰三角形中,两腰的夹角叫做顶角,顶角腰和底边的夹角叫做底角.底角如图.把一张长方形纸片按图中的虚线对折,并剪去阴影部分,再把它展开,得△ABC.活动1:实践观察ACDBAC和AB有什么关系?这个三角形有什么特点?探索:想一想,议一议1.除了剪纸的方法,还可以怎样作(画)出一个等腰三角形?2.在你作(画)出的等腰三角形中,指明它的腰,底边,顶角的底角。活动

2、2:问题探究上面剪出的等腰三角形是轴对称图形吗?把剪出的等腰三角形ABC沿折痕AD对折,找出其中相等的线段和角,填入下表重合的线段重合的角和和和和和和ACDBABAC∠B∠D你能发现等腰三角形有什么性质吗?说一说你的猜想.性质1:等腰三角形的两底角相等。(简写成“等边对等角”)CBA性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)ABCD⌒⌒1212命题1命题2命题:等腰三角形的两个底角相等(等边对等角)。已知:△ABC中,AB=AC求证:∠B=C分析:1.如何证明两个角相等?

3、2.如何构造两个全等的三角形?证法一:在△ABC中,AB=AC,作底边BC的中线AD,在△BAD与△CAD中∵AB=___BD=___AD=___∴△BAD≌△CAD()∠B=___AC∠CCDADSSSABCD提问:这个命题的条件和结论是什么?用数学符号如何表达条件和结论?我明白了ABC则有∠1=∠2D12在△ABD和△ACD中证明:作顶角∠A的平分线AD,AB=AC∠1=∠2AD=AD(公共边)∴△ABD≌△ACD(SAS)∴∠B=∠C(全等三角形对应角相等)方法二ABC则有∠ADB=∠ADC=90ºD在Rt△AB

4、D和Rt△ACD中证明:作△ABC的高线ADAB=ACAD=AD(公共边)∴Rt△ABD≌Rt△ACD(HL)∴∠B=∠C(全等三角形对应角相等)方法三等腰三角形性质性质1:等腰三角形的两底角相等。(简写成“等边对等角”)CBA性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)ABCD⌒⌒1212对称性:等腰三角形是轴对称图形,经过顶角顶点和底边中点的直线是它的对称轴性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合在△ABC中,AB=AC,点D在BC上1、∵AD⊥

5、BC∴∠=∠,____=。2、∵AD是中线,∴⊥,∠=∠。3、∵AD是角平分线,∴⊥,=。112BDDCADBC12ADBCBDDC用符号语言表示为:等腰三角形是轴对称图形.对称轴是底边上的中线(顶角平分线,底边上的高)所在直线ABCD⌒⌒1212性质1:等腰三角形的两底角相在△ABC中,∵AC=AB()∴∠B=∠C()已知等边对等角CBA方法1:已知:△ABC中,AB=AC,AD是△ABC的中线证明性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)求证:AD是△ABC的高和角平分

6、线证明:∵,AD是△ABC的中线∴BD=CD在△BAD≌△CAD中∵AB=ACBD=CDAD=AD∴△BAD≌△CAD(SSS)∠BAD=CAD;∠BDA=CDA∴AD是△ABC是角平分线又∵∠BDA+CDA=1800∴∠BDA=CDA=900∴AD是△ABC的高.ABCD练习1:小试牛刀如图(1)在等腰△ABC中,AB=AC,∠A=36°,则∠B=——∠C=—变式练习:1、如图(2)在等△ABC腰中,∠A=50°,则∠B=——,∠C=——2、如图(3)在等△ABC腰中,∠A=120°则∠B=——,∠C=——CBA图1

7、CBA图2CAB图3活动3:反馈练习,巩固提高36°36°65°65°30°30°练习2:△ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B,∠C,∠BAD,∠DAC的度数,图中有哪些相等的线段?练习3:在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数BACDBDCA摩拳擦掌例1.在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数解:AB=AC,BD=BC=AD,∠ABC=∠C=∠BDC∠A=∠ADD(等边对等角)设A=x,则∠BD

8、C=∠A+∠ABD=2x从而∠ABC=∠C=∠BDC=2x于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=1800.解得x=360在△ABC中,∠A=360∠,ABC=∠C=720BCAD活动4课堂小结等腰三角形的性质等腰三角形三线合一1、求有关等腰三角形的问题,作顶角平分线、底边中线,底边的高是常用的辅助线;2、熟练掌

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。