12.3.1等腰三角形的性质

12.3.1等腰三角形的性质

ID:36102276

大小:1.15 MB

页数:27页

时间:2019-05-05

12.3.1等腰三角形的性质_第1页
12.3.1等腰三角形的性质_第2页
12.3.1等腰三角形的性质_第3页
12.3.1等腰三角形的性质_第4页
12.3.1等腰三角形的性质_第5页
资源描述:

《12.3.1等腰三角形的性质》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、12.3.1等腰三角形的性质动手做一做ACB△ABC有什么特点?看一看有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.ACB腰腰底边顶角底角底角概念1、等腰三角形一腰为3cm,底为4cm,则它的周长是;2、等腰三角形的一边长为3cm,另一边长为4cm,则它的周长是;3、等腰三角形的一边长为3cm,另一边长为8cm,则它的周长是。10cm10cm或11cm19cm小试牛刀把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角.找一找等腰三角形是轴对称图形吗?思考是※等腰三角形是

2、轴对称图形,对称轴是顶角平分线所在的直线。重合的线段重合的角ACBDAB=ACBD=CDAD=AD∠B=∠C.∠BAD=∠CAD∠ADB=∠ADC等腰三角形除了两腰相等以外,你还能发现它的其他性质吗?大胆猜想猜想与论证等腰三角形的两个底角相等。已知:△ABC中,AB=AC求证:∠B=C分析:1.如何证明两个角相等?2.如何构造两个全等的三角形?猜想ABCD如何构造两个全等的三角形?ABC则有∠1=∠2D12在△ABD和△ACD中证明:作顶角的平分线AD,AB=AC∠1=∠2AD=AD(公共边)∴△ABD≌△ACD(SAS)∴∠B=∠C(全等三角形对应角相等)

3、方法一ABC则有BD=CDD在△ABD和△ACD中证明:作△ABC的中线ADAB=ACBD=CDAD=AD(公共边)∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)方法二ABC则有∠ADB=∠ADC=90ºD在Rt△ABD和Rt△ACD中证明:作△ABC的高线ADAB=ACAD=AD(公共边)∴Rt△ABD≌Rt△ACD(HL)∴∠B=∠C(全等三角形对应角相等)方法三猜想与论证等腰三角形的两个底角相等。已知:△ABC中,AB=AC求证:∠B=C分析:1.如何证明两个角相等?2.如何构造两个全等的三角形?性质1(等边对等角)ABCD猜想∵A

4、B=AC(已知)∴∠B=∠C(等边对等角)想一想:刚才的证明除了能得到∠B=∠C你还能发现什么?重合的线段重合的角ABDCAB=ACBD=CDAD=AD∠B=∠C.∠BAD=∠CAD∠ADB=∠ADC=90°等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合等腰三角形顶角的平分线平分底边并且垂直于底边.性质2(等腰三角形三线合一)是真是假ABCD∵AB=AC,BD=CD(已知)∴∠BAD=∠CAD,AD⊥BC()∵AB=AC,∠BAD=∠CAD(已知)∴BD=CD,AD⊥BC()∵AB=AC,AD⊥BC(已知)∴BD=CD,∠BAD=∠CAD()⒈等腰三

5、角形一个底角为70°,它的顶角为______.牛刀小试⒉等腰三角形一个角为70°,它的另外两个角为__________________.⒊等腰三角形一个角为110°,它的另外两个角为___________.①顶角+2×底角=180°②顶角=180°-2×底角③底角=(180°-顶角)÷2④0°<顶角<180°⑤0°<底角<90°结论:在等腰三角形中,40°35°,35°70°,40°或55°,55°例1已知:如图,房屋的顶角∠BAC=100º,过屋顶A的立柱ADBC,屋椽AB=AC.求顶架上∠B、∠C、∠BAD、∠CAD的度数.典型例题ABDC例2已知:在△

6、ABC中,AB=AC,∠B=80°,求∠C和∠A的度数。ABC例3如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。ABCD解:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角)设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x,于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°,在△ABC中,∠A=36°,∠ABC=∠C=72°x⌒2x⌒2x⌒⌒2x你能在图中找出几个等腰三角形?练习如图,已知△ABC中,AB=AC,BD=

7、BC,AD=DE=EB,求∠A的度数.如图,在△ABC中,点D、E、F分别在BC、AB、AC上,BD=CF,BE=CD,AB=AC,DG⊥EF于点G,求证:EG=FG。思考题谈谈你的收获!轴对称图形两个底角相等,简称“等边对等角”顶角平分线、底边上的中线、和底边上的高互相重合,简称“三线合一”等腰三角形小结性质1:等腰三角形的两个底角相等(简称“等边对等角”,前提是在同一个三角形中。)性质2:等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。(简称“三线合一”,前提是在同一个等腰三角形中。)拓展训练1.已知:如图,△ABC中,∠ABC=50º,∠AC

8、B=80°,延长CB至D,使BD=BA

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。