5、使得f(x1)=g(x2)成立,则;②∃x1∈D,∃x2∈E,使得f(x1)=g(x2)成立,则.(4)恒成立与存在性的综合性问题①∀x1∈D,∃x2∈E,使得f(x1)>g(x2)成立,则f(x)min>g(x)min;②∀x1∈D,∃x2∈E,使得f(x1)6、本题实质是存在性问题【点评】解法一在处理时,需要用分类讨论的方法,讨论的关键是极值点与区间[1,2]的关系;解法二是用的参数分离,由于ax2>x3+10中x2∈[1,4],所以可以进行参数分离,而无需要分类讨论.【牛刀小试】【2017山西大学附中第二次模拟】设函数,其中,若存在唯一的整数,使得,则的取值范围是()A.B.C.D.【答案】D【解析】令.由题意知存在唯一整数,使得在直线的下方.,当时,函数单调递减,当,函数单调递增,当时,函数取得最小值为.当时,,当时,,直线过定点,斜率为,故且,解得.(二)分离参数法【例2】已知函数的图象在点(为自然对数的底数)处的切线的斜率为.(1)
7、求实数的值;(2)若对任意成立,求实数的取值范围.【分析】(1)由结合条件函数的图象在点处的切线的斜率为,可知,可建立关于的方程:,从而解得;(2)要使对任意恒成立,只需即可,而由(1)可知,∴问题即等价于求函数的最大值,可以通过导数研究函数的单调性,从而求得其最值:,令,解得,当时,,∴在上是增函数;当时,,∴在上是减函数,因此在处取得最大值,∴即为所求.(2)由(1)知,,∴对任意成立对任意成立,令,则问题转化为求的最大值,,令,解得,当时,,∴在上是