小六数学第11讲:质数与合数(学生版)——李寒松.docx

小六数学第11讲:质数与合数(学生版)——李寒松.docx

ID:35973076

大小:279.67 KB

页数:5页

时间:2019-04-29

小六数学第11讲:质数与合数(学生版)——李寒松.docx_第1页
小六数学第11讲:质数与合数(学生版)——李寒松.docx_第2页
小六数学第11讲:质数与合数(学生版)——李寒松.docx_第3页
小六数学第11讲:质数与合数(学生版)——李寒松.docx_第4页
小六数学第11讲:质数与合数(学生版)——李寒松.docx_第5页
资源描述:

《小六数学第11讲:质数与合数(学生版)——李寒松.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第十一讲质数与合数1.质数与合数2.质因数与分解质因数(算术基本定理)3.利用分解质因数求约数的个数4.质数,合数有下面常用的性质:1.在有些问题的解决中适当地考虑到自然数的奇偶性和是否为质数或合数的特点,恰当地应用这些特点可简便、快捷地解决问题。2.能应用质数与合数的性质解题。例1:在三位愉快的教士面前有一个画有16个方格的台面,上面放有10个硬币,每个硬币占一个方格。教士们绞尽脑汁想用这10个硬币摆成尽可能多的硬币个数都是偶数的行。行可以是横的,也可以是竖的,也可以是对角线。即图1中的硬币如何重新布局才能排

2、出尽可能多的硬币个数是偶数的行。   例2:用五个奇数数码能否组成自然数14。例3:有一个商人买进一些狗和兔子,其中兔子的对数正好是狗的只数的一半。商人买一只狗花2元钱,和他买一对兔子的价钱一样。他出售时各加价10%。这个商人卖出了大部分狗和兔子,最后剩下7只。他发现卖得的钱正好和买进狗和兔子用掉的钱一样多。他赚的钱也就是这剩下的7只狗和兔子的售价。试问商人赚了多少钱?例4:解答下列各题:(1)7个相邻的奇数的和是147,求这7个数。(2)三个相邻的偶数相乘,乘积是一个六位数4□□□□8,请把中间的四个数字填出

3、来。例5:求自然数中前25个奇数的和;并判断这个和是奇数还是偶数?例6:求270的约数个数。例7:求合数2730的约数中,其中最小的三位数约数是多少?A1.已知三个不同的质数a,b,c满足abbc+a=2000,那么a十b十c=.2.不超过100的所有质数的乘积减去不超过60且个位数字为7的所有质数的乘积所得之差的个位数字是().A.3B.1C.7D.93.求这样的质数,当它加上10和14时,仍为质数.4.(1)将l,2,…,2004这2004个数随意排成一行,得到一个数N.求证:N一定是合数;(2)若n是大于

4、2的正整数,求证:2n一1与2n+1中至多有一个是质数.5.用正方形的地砖不重叠、无缝隙地铺满一块地,选用边长为xcm规格的地砖,恰用n块;若选田边长为ycm规格的地砖,则要比前一种刚好多用124块.已知x,y、n都是正整数.且(x,y)=1.试问这块地有多少平方米?B6.由超级计算机运算得到的结果2859433—1是一个质数,则2859433+1是()A.质数B.合数C奇合数D.偶合数7.用正方形的地砖不重叠、无缝隙地铺满一块地,选用边长为x(㎝)规格的地砖,恰用n块;若选用边长为了y(cm)规格的地砖,则要

5、比前一种刚好多用124块.已知x,、y、n都是正整数,且(x,y)=1.试问:这块地有多少平方米?8.p是质数,p4+3仍是质数,求p5+3的值.9.已知正整数p和q都是质数,且7p+q与pq+11也都是质数,试求pq+qp的值.10.若n为自然数,n+3与n+7都是质数,求n除以3所得的余数.C11.设a、b、c、d都是自然数,且a2+b2=c2+d2,证明:a+b+c+d定是合数.12.正整数m和m是两个不同的质数,m+n+mn的最小值是p,求的值.13.若a、b、c是1998的三个不同的质因数,且a<b<

6、c,则(b+c)a的值是多少?14.n是不小于40的偶数,试证明:n总可以表示成两个奇合数的和.15.41名运动员所穿运动衣号码是1,2,…,40,41这41个自然数,问:(1)能否使这41名运动员站成一排,使得任意两个相邻运动员的号码之和是质数?(2)能否让这41名运动员站成一圈,使得任意两个相邻运动员的号码之和都是质数?若能办到,请举一例;若不能办到,请说明理由.16.写出5个正整数,使它们的总和等于20,而它们的积等于420.17,若自然数n+3与n+7都是质数,求n除以6的余数.1.在l,2,3,…,n

7、这n个自然数中,已知共有p个质数,q个合数,k个奇数,m个偶数,则(q一m)十(p一k)=.2.p是质数,并且p+3也是质数,则p11一52=.3.若a、b、c、d为整数,且(a2+b2)(c2+d2)=1997,则a2+b2+c2+d2=.4.已知a是质数,b是奇数,且a2+b=2001,则a+b=.5.以下结论中()个结论不正确.(1)1既不是合数也不是质数;(2)大于0的偶数中只有一个数不是合数;(3)个位数字是5的自然数中,只有一个数不是合数;(4)各位数字之和是3的倍数的自然数,个个都是合数.A.1B

8、.2C.3D.46.若p为质数,p3+5仍为质数,p5+7为().A.质数B.可为质数也可为合数C.合数D.既不是质数也不是合数7.超级计算机曾找到的最大质数是2859433一1,这个质数的末尾数字是().A.1B.3C.7D.98.若正整数a、b、c满足,a为质数,那么b、c两数().A.同为奇数B.同为偶数C.一奇一偶D.同为合数1.四年级全年级共有学生三百名,现在选派一位同学去观

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。