人工神经网络 毕业论文外文翻译

ID:358916

大小:94.65 KB

页数:15页

时间:2017-07-27

人工神经网络  毕业论文外文翻译_第1页
人工神经网络  毕业论文外文翻译_第2页
人工神经网络  毕业论文外文翻译_第3页
人工神经网络  毕业论文外文翻译_第4页
人工神经网络  毕业论文外文翻译_第5页
资源描述:

《人工神经网络 毕业论文外文翻译》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、外文资料ArtificialNeuralNetworksArtificialNeuralNetworks-BasicFeaturesComposedofalargenumberofprocessingunitsconnectedbyanonlinear,adaptiveinformationprocessingsystem.Itisthebasisformodernneuroscienceresearchfindingspresented,tryingtosimulatealargeneuralnetworkprocessing,memory,

2、informationprocessingwayofinformation.Artificialneuralnetworkhasfourbasiccharacteristics:(1)non-linearnon-linearrelationshipisthegeneralcharacteristicsofthenaturalworld.Thewisdomofthebrainisanonlinearphenomenon.Artificialneuralactivationorinhibitionintwodifferentstates,thisb

3、ehaviormathematicallyexpressedasalinearrelationship.Thresholdneuronshaveanetworkwithbetterperformance,canimprovefaulttoleranceandstoragecapacity.(2)non-limitationofaneuralnetworkisusuallymoreextensiveneuronalconnectionsmade.Theoverallbehaviorofasystemdependsnotonlyonthechara

4、cteristicsofsingleneurons,andmayprimarilybyinteractionbetweenunits,connectedbythedecision.Byalargenumberofconnectionsbetweenthecellsofnon-simulatedbrainlimitations.Associativememorylimitationsofatypicalexampleofnon.(3)characterizationofartificialneuralnetworkisadaptive,self-

5、organizing,self-learningability.Neuralnetworkscannotonlydealwiththechangesofinformation,butalsoprocessinformationthesametime,nonlineardynamicsystemitselfisalsochanging.Iterativeprocessisfrequentlyusedindescribingtheevolutionofdynamicalsystems.(4)Non-convexityofthedirectionof

6、theevolutionofasystem,undercertainconditions,willdependonaparticularstatefunction.Suchasenergyfunction,anditsextremevaluecorrespondingtothestateofthesystemmorestable.Non-convexityofthisfunctionismorethanoneextremum,thissystemhasmultiplestableequilibrium,whichwillcausethesyst

7、emtotheevolutionofdiversity.Artificialneuralnetwork,neuralprocessingunitcanbeexpressedindifferentobjects,suchasfeatures,letters,concepts,orsomeinterestingabstractpatterns.Thetypeofnetworkprocessingunitisdividedintothreecategories: inputunits,outputunitsandhiddenunits.Inputun

8、itreceivingthesignalanddataoutsideworld;outputunitforprocessingtheresultsto

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《人工神经网络 毕业论文外文翻译》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、外文资料ArtificialNeuralNetworksArtificialNeuralNetworks-BasicFeaturesComposedofalargenumberofprocessingunitsconnectedbyanonlinear,adaptiveinformationprocessingsystem.Itisthebasisformodernneuroscienceresearchfindingspresented,tryingtosimulatealargeneuralnetworkprocessing,memory,

2、informationprocessingwayofinformation.Artificialneuralnetworkhasfourbasiccharacteristics:(1)non-linearnon-linearrelationshipisthegeneralcharacteristicsofthenaturalworld.Thewisdomofthebrainisanonlinearphenomenon.Artificialneuralactivationorinhibitionintwodifferentstates,thisb

3、ehaviormathematicallyexpressedasalinearrelationship.Thresholdneuronshaveanetworkwithbetterperformance,canimprovefaulttoleranceandstoragecapacity.(2)non-limitationofaneuralnetworkisusuallymoreextensiveneuronalconnectionsmade.Theoverallbehaviorofasystemdependsnotonlyonthechara

4、cteristicsofsingleneurons,andmayprimarilybyinteractionbetweenunits,connectedbythedecision.Byalargenumberofconnectionsbetweenthecellsofnon-simulatedbrainlimitations.Associativememorylimitationsofatypicalexampleofnon.(3)characterizationofartificialneuralnetworkisadaptive,self-

5、organizing,self-learningability.Neuralnetworkscannotonlydealwiththechangesofinformation,butalsoprocessinformationthesametime,nonlineardynamicsystemitselfisalsochanging.Iterativeprocessisfrequentlyusedindescribingtheevolutionofdynamicalsystems.(4)Non-convexityofthedirectionof

6、theevolutionofasystem,undercertainconditions,willdependonaparticularstatefunction.Suchasenergyfunction,anditsextremevaluecorrespondingtothestateofthesystemmorestable.Non-convexityofthisfunctionismorethanoneextremum,thissystemhasmultiplestableequilibrium,whichwillcausethesyst

7、emtotheevolutionofdiversity.Artificialneuralnetwork,neuralprocessingunitcanbeexpressedindifferentobjects,suchasfeatures,letters,concepts,orsomeinterestingabstractpatterns.Thetypeofnetworkprocessingunitisdividedintothreecategories: inputunits,outputunitsandhiddenunits.Inputun

8、itreceivingthesignalanddataoutsideworld;outputunitforprocessingtheresultsto

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭