欢迎来到天天文库
浏览记录
ID:34783810
大小:2.73 MB
页数:121页
时间:2019-03-10
《mirna及转录因子结合位点预测与调控功能分析》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、博士学位论文miRNA及转录因子结合位点预测与调控功能分析RESEARCHONBIDNINGSITEPREDICTIONANDREGULATORYFUNCTIONANALYSISOFMIRNAANDTRANSCRIPTIONFACTOR汪国华2009年9月国内图书分类号:TP18学校代码:10213国际图书分类号:004.89密级:公开工学博士学位论文miRNA及转录因子结合位点预测与调控功能分析博士研究生:汪国华导师:王晓龙教授副导师王亚东教授申请学位:工学博士学科:计算机应用技术所在单位:计算机科学与技术学院答辩日期:2009
2、年9月授予学位单位:哈尔滨工业大学ClassifiedIndex:TP18U.D.C:004.89DissertationfortheDoctoralDegreeinEngineeringRESEARCHONBIDNINGSITEPREDICTIONANDREGULATORYFUNCTIONANALYSISOFMIRNAANDTRANSCRIPTIONFACTORCandidate:WangGuohuaSupervisor:Prof.WangXiaolongAssociateSupervisor:Prof.WangYadongAc
3、ademicDegreeAppliedfor:DoctorofEngineeringSpeciality:ComputerApplicationTechnologyAffiliation:SchoolofComputerScienceandTechnologyDateofDefence:September,2009Degree-Conferring-Institution:HarbinInstituteofTechnology摘要摘要随着包括人类在内的上百种生物的基因组核酸全序列测定的完成,生物学家们正在制定并实施后基因组计划。基
4、因组学研究重心已开始从揭示生命的所有遗传信息转移到在分子整体水平对功能的研究上,其中,理解基因转录调控与转录后调控机制是后基因组时代的一个基本目标。近年来,作为基因转录调控与转录后调控过程中的重要作用因子,转录因子与miRNA成为生物信息学的重要研究领域。其中,miRNA曾在2002和2003连续两年被Science杂志评选为十大科技新闻。越来越多的生物信息学研究人员致力于研究转录因子与miRNA的生物功能与调控机制。但目前的方法局限于单独研究转录因子或miRNA的调控功能,割离了转录因子与miRNA对基因表达的共同作用。因此,本
5、文以基因表达作为切入点,研究转录因子与miRNA调控模型,预测它们的结合位点与调控功能,以及识别miRNA启动子区域。本文的主要内容包括:(1)提出转录因子与miRNA共调控基因表达的结合位点预测算法。本文对传统的利用芯片数据研究转录调控的计算方法进行了分析,并作了新的扩展,充分考虑转录因子与miRNA对基因表达的共同作用,设计并实现了基于基因表达芯片数据的转录因子及miRNA结合位点预测算法。算法通过测试5'端调控区与3'端非翻译区域中固定长度的所有调控序列以选择能够最切合基因表达水平的序列,预测转录因子及miRNA的结合位点。
6、在小鼠胚胎酒精综合症细胞中使用该算法预测得到的转录因子与miRNA结合位点具有生物学意义,验证了算法的有效性。(2)研究基于结合位点信息的转录因子与miRNA调控功能分析模型。转录因子结合位点和miRNA靶基因预测一直是生物学研究的热点,已经有很多成熟的数据库和软件。本文讨论了利用相关生物学知识定位转录因子及miRNA结合位点的方法,结合已知转录因子模体及miRNA与靶基因相互作用的知识,设计了基于结合位点信息的转录因子及miRNA调控功能分析方法。该方法将结合位点的定位整合到相关的功能数据之中,允许从调控全局基因表达模式的角度上
7、,对引起基因表达差异的转录因子和miRNA进行分析。使用该方法在前列腺癌细胞中预测出导致前列腺癌恶化的5个功能转录因子与7个miRNA,并-I-哈尔滨工业大学工学博士学位论文通过各种生物知识验证了预测结果的正确性。(3)提出基于CHIP-SEQ数据的miRNA启动子计算识别算法。miRNA启动子识别是研究miRNA转录调控的一个难点问题。传统的方法使用基因组特征预测miRNA启动子。随着新一代测序技术的出现,CHIP-SEQ数据为启动子预测提供了新的数据支持,开辟了新的研究方向。本文利用RNA聚合酶Ⅱ的CHIP-SEQ数据,研究基
8、于CHIP-SEQ数据的启动子区域表示模型,设计模式参数学习算法,并利用蛋白质编码基因的启动子上的数据优化模型参数,在miRNA上游区域预测启动子。算法被用在乳腺癌细胞的RNA聚合酶ⅡCHIP-SEQ数据中,预测出72个miRNA启动子,并分析了启
此文档下载收益归作者所有