欢迎来到天天文库
浏览记录
ID:34689384
大小:4.45 MB
页数:18页
时间:2019-03-09
《全国高中数学二轮专题复习学案专题七二数形结合思想》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、专题七:思想方法专题第二讲数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.矚慫润厲钐瘗睞枥庑赖。数形结合的实质是将抽象的数学语言与直观的图象结合起来,关
2、键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.聞創沟燴鐺險爱氇谴净。二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功
3、效,具体操作时,应注意以下几点:残骛楼諍锩瀨濟溆塹籟。1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。酽锕极額閉镇桧猪訣锥。四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;第18页共18页3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化
4、,几何问题代数化,以便于问题求解。【核心要点突破】要点考向1:利用数学概念或数学式的几何意义解题例1:实系数一元二次方程x2+ax+2b=0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求:彈贸摄尔霁毙攬砖卤庑。(1)点(a,b)对应的区域的面积;(2)的取值范围;(3)(a-1)2+(b-2)2的值域.思路精析:列出a,b满足的条件→画出点(a,b)对应的区域→求面积→根据的几何意义求范围→根据(a-1)2+(b-2)2的几何意义求值域.謀荞抟箧飆鐸怼类蒋薔。解析:方程x2+ax+2b=0的两根在区间(0,1)和(1,2)上的几何意义分别是:函数y=f(x)=x2+ax
5、+2b与x轴的两个交点的横坐标分别在区间(0,1)和(1,2)内,厦礴恳蹒骈時盡继價骚。由此可得不等式组由,解得A(-3,1).由,解得C(-1,0).∴在如图所示的aOb坐标平面内,满足条件的点(a,b)对应的平面区域为△ABC(不包括边界).(1)△ABC的面积为(h为A到Oa轴的距离).(2)几何意义是点(a,b)和点D(1,2)边线的斜率.由图可知第18页共18页(3)∵(a-1)2+(b-2)2表示的区域内的点(a,b)与定点(1,2)之间距离的平方,注:如果等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的思想方法来解题,即所谓的几何法求解,比较常见的对应有:茕桢广鳓
6、鯡选块网羈泪。(1)连线的斜率;(2)之间的距离;(3)为直角三角形的三边;(4)图象的对称轴为x=.只要具有一定的观察能力,再掌握常见的数与形的对应类型,就一定能得心应手地运用数形结合的思想方法.鹅娅尽損鹌惨歷茏鴛賴。要点考向2:用数形结合求方程根的个数,解决与不等式有关的问题例2:(1)已知:函数f(x)满足下面关系:①f(x+1)=f(x-1);②当x∈[-1,1]时,f(x)=x2,则方程f(x)=lgx解的个数是()籟丛妈羥为贍偾蛏练淨。(A)5(B)7(C)9(D)10(2)设有函数f(x)=a+和g(x)=,已知x∈[-4,0]时,恒有f(x)≤g(x),求实数a的范围.預頌
7、圣鉉儐歲龈讶骅籴。思路精析:(1)画出f(x)的图象→画出y=lgx的图象→数出交点个数.(2)f(x)≤g(x)变形为→画出的图象→画出的图象→寻找成立的位置解析:(1)选C.由题间可知,f(x)是以2为周期,值域为[0,1]的函数.又f(x)=lgx,则x∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.渗釤呛俨匀谔鱉调硯錦。(2)f(x)≤g(x),即,变形得,令第18页共18页…………
此文档下载收益归作者所有