条件期望的性质与应用

条件期望的性质与应用

ID:33901215

大小:93.83 KB

页数:29页

时间:2019-03-01

条件期望的性质与应用_第1页
条件期望的性质与应用_第2页
条件期望的性质与应用_第3页
条件期望的性质与应用_第4页
条件期望的性质与应用_第5页
资源描述:

《条件期望的性质与应用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、条件期望的性质和应用摘要:条件数学期望(以下简称条件期望)是随机分析理论中十分重要的概念,在理论实际上都有很重要的应用。本文首先分析了条件期望的儿种定义和性质,进而研究了条件期望的求法,最后举例分析条件期望在实际问题中的应用。关键词:条件期望;定义;性质;应用条件期望是现代概率体系中的一个重要概念。近年来,随着人们对随机现象的不断观察和研究,条件期望已经被广泛的利用到日常生活中,尤其值得注意的是条件期望在最优预测中的应用。现代概率论总是从讲述条件期望开始的。鉴于此,在分析条件期望的几种定义时,通过比较它们的优缺点,使初学者在充分认识条件期望的基础上,由非条件期望的性质学习顺利过渡到条件期望性

2、质的学习,实现知识的迁移。通过研究条件期望的求法,从而提高计算能力与解题技巧。条件期望不仅在数学上有重要的价值与意义,还在生物、统计、运筹和经济管理等方面有着重要的作用与贡献。总之,研究条件期望的性质和应用不仅有助于学生对数学的学习,而口还有利于进一步探索科学的其它领域。1条件期望的几种定义1.1条件分布角度出发的条件期望定义从条件分布的角度出发,条件分布的数学期望称为条件期望。由离散随机变量和连续随机变量条件分布的定义,引岀条件期望的定义。定义1离散随机变量的条件期望设二维离散随机变量(X,Y)的联合分布列为p..=P(X=xiiY=兀),i=l,2,・・・J=l,2,・・・・,对一切使P

3、(Y=y)=卩订=工卩耳>0的丹,称/=!Pii=P(X=,心1,2,…Pj为给定Y=刀条件下X的条件分布列。同理,对i切使P(X=£•)=门.=》耳>0的兀,称为给定X=Xj条件下Y的条件分布列。此时条件分布函数为F(y

4、xJ=工P(Y=y}X=兀)=工p沖oy)^yy卢y故条件分布的数学期望(若存在)称为条件期望,定义如下E(XY=y)=^xiP(X=xiY=y)或E(Y

5、Xr)二工兀P(心兀

6、Xr)。••IJ定义2连续随机变量的条件期望设二维连续随机变量(X,Y)的联合密度函数为"(兀,刃,边际密度函数为px(%)和內(y)。对一切使pY(y)〉0的y,给定K=y条件卜-X的条

7、件分布函数和条件密度函数分别为F(x

8、y)=j',p(x

9、y)=;—內(y)pY(y)同理对一切使px(x)>0的兀,给定X二X条件下Y的条件分布函数和条件密度函数分别为F(y

10、x)二『P’x;叭血,"(:>:)。YPx(x)Pxx)故条件分布的数学期望(若存在)称为条件期望,定义如下£(X

11、y=),)=广¥(兀卜皿或E(Y

12、X=x)=「yp(yx)dy□1.2测度论角度出发的条件期望定义借助测度论这一数学工具,给出了随机变量在给定子》代数下条件期望的一般性定义一一公理化定义,通过讨论,还可同时发现它的两条等价性定义。引理1若X是可积(或积分存在)随机变量,则必存在惟一的(不计几乎处处相

13、等的差别)可积(相应地,积分存在)的G可测随机变量Y,它满足定义3(公理化定义)设X是概率空间(Q,F,P)上的可积(或积分存在)随机变量,G是F的子<7代数,则X关于G的条件期望E(X

14、G)是满足以下两条件的随机变量:(i)E(X

15、G)是G可测的;(ii)£E(XG)dP=£XdP,VAgGo特别地,当G=(7(7)时,也称E(X

16、G)为X关于随机变量丫的条件期望,记为E(X

17、Y)。由引理1,条件期望E(X

18、G)=』就是由(1)式定义的符号测度"关于P的dPRadon导数。由定义3看出,条件期望是通过积分等式(1)确定的,根据积分性质易知,两个几乎处处相等的函数的积分是相等的。因此,条件

19、期望的确定以及许多有关条件期望的论断都是不计儿乎处处相等的差别的,从而涉及的关系式都是儿乎处处相等意义下的。由上面的讨论,我们有如下的等价定义:定义4设X是概率空间(Q,F,P)上的可积(或积分存在)随机变量,G是F的子/代数,则X关于G的条件期望Y是满足以下两条件的随机变量(i)Y是G可测的;(ii)fYdP=fXdPNAwG。JAJA定义5设X是概率空间(Q,F,P)±的可积(或积分存在)随机变量,G是F的子/代数,则X关于G的条件期望E(X

20、G)是满足以下两条件的随机变量:(i)E(X

21、G)是G可测的;(ii)=G。上述三个定义虽然表达式有所不同,但其本质是相同的,且都是以公理化的形式

22、给出的,显得比较抽象,增加了定义的理解难度。1.3几何角度出发的条件期望定义从几何的角度,利用投影定理这一数学工具,给出条件期望的几何定义。引理2(投影定理)如果M是Hilbert空间H的一个闭线性子空间,且xeH,那么(i)存在惟一元素xwM=infx-yyeM=inf

23、

24、x-y

25、

26、成立的充分必要条件是xwM,x-xgM丄,其中M是Hilbert空间上的范数,M丄是M的正交补。称;为兀在M上的正交投影,记为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。