欢迎来到天天文库
浏览记录
ID:33008912
大小:2.35 MB
页数:64页
时间:2019-02-19
《异纤在线检测与清除关键技术的分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、AbstractAppearancedefects,colorshadingandotherproblemsoftenariseduringthetextileprocessofforeignfibers,whicheffectthegradingofcoRon,spinningandfabricqualityseriously.Currentlyforeignfiberdetectionismostlydetectedbehindthecottonopening,whenthefibershavebeenpaper,thepr
2、ocessofforeignfiberstestingscattered.Soit’Sdifficulttodetect.Intheispositionedbeforetheopeningprocess·Themajorcontentsasfollowing:Basingonthestudyofforeignfibersdetectionstatushomeandabroad,theprocessandtechnicalrequirementsbeforetheopeningofforeignfibersisproposed·T
3、hen.theoverallstructureofthedetectionsystemisdesigned,whichincludesthestructuraldesignandcontrollerdesignofbreakingup,imageacquisitionandprocessing,andtherejectingofforeignfibers.Finallytheprototypewasproduced,whichcandetectthesmallestsizesheet6mm2andlinear1mm.Curren
4、tly,therunningoftheprototypeisverywell.Forexample:thinmaterialsuchashairCanreachmorethan85%.Accordingtotheperformancerequirementsofforeignfiber,theimagecollectionsystemwithproperpixelandresolutionwassetup’andtheadjustablestructuralofcameraandlightsourceWasdesigned,wh
5、ichsatisfiedtherequirementofcameralensfixedandadjustmentrequirements·ThekeytechnologyofforeignfiberimageprocessingsystemistofindingthedifferencesbetweenforeignfibersandcoRonfibers.Throughthecomparingandanalysisofthealgorithmsinvariousstages,properimageprocessingalgor
6、ithmsisin仃oduced·Aftergray。levelprocessmg,Medianfilteringmethodisusedtodenoiseimage,andtheidentificationofforeignfibersisachievedthroughtheedgedetection.Theextractingobjectboundaryinformationachievestheobjectivespositioningoftheforeignfibersincottonlayer.Accordingtoo
7、wncharacteristicsofthistopic,thecontrolsystemwhosecoreISPLCisusetocontrolrawcottonforeignfiberdetectionandcontrolsystemISdesignedinthepaper.Thepositioningsystemofforeignfibersinrawcottonpneumaticdetectionisanalyzedtoachievetimelyandaccuratedetectionoftherawcottonfore
8、ignfibersonline.Experimentsshowthattheforeignfibersdetectingsystemwithabovetechnologieshashigherdetectingability,andcandetectbefore
此文档下载收益归作者所有