欢迎来到天天文库
浏览记录
ID:31971738
大小:210.15 KB
页数:16页
时间:2019-01-29
《八年级培优试题(doc版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.图4-10(2)如图4-11,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.图4-112.如图①,M、N点分别在等边三角形的BC、CA边上,且BM=CN,AM、BN交于点Q.(1)求证:∠BQM=60°;(2)如图②,如果点M、N分别移动到BC、CA的延长线上,其它条件不变,(1)中的结论是否仍然
2、成立?若成立,给予证明;若不成立,说明理由.3.已知∠AOB=45°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,判断P1,O,P2三点构成的三角形的形状,并说明理由。4.为了支援东北地区人民抗险救灾,某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成。 (1)按此计划,该公司平均每天应生产帐篷顶; (2)生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务。求该公司原计划安排多少名工人生产帐篷?5.如图,C为线段BD上一点(不与点B,D重合)
3、,在BD同侧分别作正三角形ABC和正三角形CDE,AD与BE交于一点F,AD与CE交于点H,BE与AC交于点G.(1)求证:BE=AD;(2)求∠AFG的度数;(3)求证:CG=CH.6.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请
4、说明理由;若不变,则求出它的度数.7.△ABC中,AB=AC,点D为射线BC上一个动点(不与B、C重合),以AD为一边向AD的左侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作BC的平行线,交直线AB于点F,连接BE.(1)如图1,若∠BAC=∠DAE=60°,则△BEF是 _________ 三角形;(2)若∠BAC=∠DAE≠60°①如图2,当点D在线段BC上移动,判断△BEF的形状并证明;②当点D在线段BC的延长线上移动,△BEF是什么三角形?请直接写出结论并画出相应的图形. 8.如图1,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于
5、点E,交CB于点F. 将图1中的△ADE沿AB向右平移到△A'D'E'的位置,使点E'落在BC边上,其他条件不变,如图2所示.试猜想:BE'与CF有怎样的数量关系?请证明你的结论.9.已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:(1)当t为何值时,△PBQ是直角三角形?(2)当t为何值时,△PBQ是等边三角形?9.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上
6、以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?·11.已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C
7、重合,求证:AF=AE+AD;(2)如图2,若AD=AB,求证:AF=AE+BC. 11.如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△GF,可得出结论,他的结论应是 .【探索延伸】如图2,若在四边形ABC
此文档下载收益归作者所有