欢迎来到天天文库
浏览记录
ID:31803083
大小:148.00 KB
页数:6页
时间:2019-01-18
《3.1一元一次方程及其解法例题与讲解.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、3.1 一元一次方程及其解法1.一元一次方程(1)一元一次方程的概念只含有一个未知数(元),未知数的次数都是1,且等式两边都是整式的方程叫做一元一次方程.如:7-5x=3,3(x+2)=4-x等都是一元一次方程.解技巧正确判断一元一次方程判断一元一次方程的四个条件是:①只含有一个未知数(元);②未知数的次数都是一次;③未知数的系数不能为0;④分母中不含未知数,这四个条件缺一不可.(2)方程的解①概念:使方程两边相等的未知数的值叫做方程的解.一元方程的解,也叫做方程的根.②方法:要检验某个数值是不是方程的解,只需看两点:一看,它是不是方程中未知数的值;二
2、看,将它分别代入方程的左边和右边,若方程左、右两边的值相等,则它是方程的解.如x=3是方程2x-4=2的解,而y=3就不是方程2x-4=2的解.(3)解方程求方程的解的过程叫做解方程.方程的解和解方程是不同的概念,方程的解是求得的结果,它是一个数值(或几个数值),而解方程是指求出方程的解的过程.【例1-1】下列各式哪些是一元一次方程( ).A.S=ab;B.x-y=0;C.x=0;D.=1;E.3-1=2;F.4y-5=1;G.2x2+2x+1=0;H.x+2.解析:E中不含未知数,所以不是一元一次方程;G中未知数的次数是2,所以不是一元一次方程;A
3、与B中含有的未知数不是一个,也不是一元一次方程;H虽然形式上字母的个数是一个,但它不是等式,所以也不是一元一次方程;D中分母中含有未知数,不是一元一次方程;只有C,F符合一元一次方程的概念,所以它们是一元一次方程.答案:CF【例1-2】x=-3是下列方程( )的解.A.-5(x-1)=-4(x-2)B.4x+2=1C.x+5=5D.-3x-1=0解析:对于选项A,把x=-3代入所给方程的左右两边,左边=-5×(-3-1)=20,右边=-4×(-3-2)=20,因为左边=右边,所以x=-3是方程-5(x-1)=-4(x-2)的解;对于选项B,把x=-3
4、代入所给方程的左右两边,左边=4×(-3)+2=-10,右边=1,因为左边≠右边,所以x=-3不是方程4x+2=1的解,选项C,D按以上方法加以判断,都不能使方程左右两边相等,只有A的左右两边相等,故应选A.答案:A2.等式的基本性质(1)等式的基本性质①性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.用式子形式表示为:如果a=b,那么a+c=b+c,a-c=b-c.②性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.用式子形式表示为:如果a=b,那么ac=bc,=(c≠0).③性质3:如果a=b,
5、那么b=a.(对称性)如由-8=y,得y=-8.④性质4:如果a=b,b=c,那么a=c.(传递性)如:若∠1=60°,∠2=∠1,则∠2=60°.(2)等量代换在解题过程中,根据等式的传递性,一个量用与它相等的量代替,简称等量代换.谈重点应用不等式的性质的注意事项(1)应用等式的基本性质1时,一定要注意等式两边同时加上(或减去)同一个数或同一个整式,才能保证所得结果仍是等式.这里特别要注意:“同时”和“同一个”,否则就会破坏相等关系.(2)等式的基本性质2中乘以(或除以)的仅仅是同一个数而不包括整式,要注意与性质1的区别.(3)等式两边不能都除以0,
6、因为0不能作除数或分母.【例2-1】下列运用等式的性质对等式进行的变形中,正确的是( ).A.若4y+2=3y-1,则y=1B.若7a=5,则a=C.若=0,则x=2D.若-1=1,则x-6=1解析:首先观察等式的左边是如何由上一步变形得到的,确定变形的依据,再对等式的右边进行相应的变形,得出结论.A根据等式的基本性质1,等式的两边都减去3y+2,左边是y,右边是-3,不是1;C根据等式的基本性质2,两边都乘以2,右边应为0,不是2;D根据等式的基本性质2,左边乘以6,而右边漏乘6,故不正确;只有B根据等式的基本性质2,两边都除以7,得到a=.答案:
7、B【例2-2】利用等式的基本性质解方程:(1)5x-8=12;(2)4x-2=2x;(3)x+1=6;(4)3-x=7.分析:利用等式的基本性质求解.先利用等式的基本性质1将方程变形为左边只含有未知数的项,右边含有常数项,再利用等式的基本性质2将未知数的系数化为1.解:(1)方程的两边同时加上8,得5x=20.方程的两边同时除以5,得x=4.(2)方程的两边同时减去2x,得2x-2=0.方程的两边同时加上2,得2x=2.方程的两边同时除以2,得x=1.(3)方程两边都同时减去1,得x+1-1=6-1,∴x=6-1.∴x=5.(4)方程两边都加上x,得3
8、-x+x=7+x,3=7+x,方程两边都减去7,得3-7=7+x-7,∴-4=x,即x=-4.
此文档下载收益归作者所有