欢迎来到天天文库
浏览记录
ID:31527056
大小:103.00 KB
页数:6页
时间:2019-01-12
《高中数学 第二章 解三角形 1_2 余弦定理(一)学案 北师大版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.2 余弦定理(一)学习目标 1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法.2.会运用余弦定理解决两类基本的解三角形问题.知识点一 余弦定理的推导思考1 根据勾股定理,若△ABC中,∠C=90°,则c2=a2+b2=a2+b2-2abcosC.①试验证①式对等边三角形还成立吗?你有什么猜想? 思考2 在c2=a2+b2-2abcosC中,abcosC能解释为哪两个向量的数量积?你能由此证明思考1的猜想吗? 梳理 余弦定理的发现是基于已知两边及其夹角求第三边的需要.因为两边及其夹角恰好是平面向量一组基底的条
2、件,所以能把第三边用基底表示进而求出模.另外,也可通过建立坐标系利用两点间距离公式证明余弦定理.知识点二 余弦定理的呈现形式1.a2=__________________,b2=____________________,c2=____________.2.cos____=;cos____=;cos____=.知识点三 适宜用余弦定理解决的两类基本的解三角形问题思考1 观察知识点二第1条中的公式结构,其中等号右边涉及几个量?你认为可用来解哪类三角形? 思考2 观察知识点二第2条中的公式结构,其中等号右边涉及几个量?你认
3、为可用来解哪类三角形?梳理 余弦定理适合解决的问题:(1)已知两边及其夹角,解三角形;(2)已知三边,解三角形.类型一 余弦定理的证明例1 已知△ABC,BC=a,AC=b和角C,求解c. 非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。反思与感悟 所谓证明,就是在新旧知识间架起一座桥梁.桥梁架在哪儿,要勘探地形,证明一个公式,要考察公式两边的结构特征,联系已经学过的知识,看有没有相似的地方.跟踪训练1 例1涉
4、及线段长度,能不能用解析几何的两点间距离公式来研究这个问题?类型二 用余弦定理解三角形命题角度1 已知两边及其夹角例2 在△ABC中,已知b=60cm,c=34cm,A=41°,解三角形.(角度精确到1°,边长精确到1cm)反思与感悟 已知三角形两边及其夹角时,应先从余弦定理入手求出第三边,再利用正弦定理求其余的角.跟踪训练2 在△ABC中,已知a=2,b=2,C=15°,求A. 命题角度2 已知三边例3 在△ABC中,已知a=134.6cm,b=87.8cm,c=161.7cm,解三角形(角度精确到1′). 反思
5、与感悟 已知三边求三角,可利用余弦定理的变形cosA=,cosB=,cosC=求一个角,求其余角时,可用余弦定理也可用正弦定理.跟踪训练3 在△ABC中,sinA∶sinB∶sinC=2∶4∶5,判断三角形的形状. 1.一个三角形的两边长分别为5和3,它们夹角的余弦值是-,则三角形的另一边长为( )A.52B.2C.16D.42.在△ABC中,a=7,b=4,c=,则△ABC的最小角为( )A.B.C.D.3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为(
6、 )A.B.C.D.4.在△ABC中,a,b,c分别为角A,B,C的对边,如果a,b,c成等差数列,B=30°,△ABC的面积为,那么b等于( )A.B.1+C.D.2+非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。1.利用余弦定理可以解决两类有关三角形的问题:(1)已知两边和夹角,解三角形.(2)已知三边求三角形的任意一角.2.余弦定理与勾股定理的关系:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是
7、余弦定理的特例.(1)如果一个三角形两边的平方和大于第三边的平方,那么第三边所对的角是锐角.(2)如果一个三角形两边的平方和小于第三边的平方,那么第三边所对的角是钝角.(3)如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角.非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。答案精析问题导学知识点一思考1 当a=b=c时,∠C=60°,a2+b2-2abcosC=c2+c2-2c·ccos60°
8、=c2,即①式仍成立,据此猜想,对一般△ABC,都有c2=a2+b2-2abcosC.思考2 abcosC=
9、C
10、·
11、C
12、cos,=·.∴a2+b2-2abcosC=2+2-2·=(-)2=2=c2.猜想得证.知识点二1.b2+c2-2bccosA c2+a2-2cacosB a2+b2-2abcosC2.A B C知识点三思考1 每个公式
此文档下载收益归作者所有