欢迎来到天天文库
浏览记录
ID:30923893
大小:2.70 MB
页数:71页
时间:2019-01-04
《高考数学大一轮复习高考专题突破四高考中的立体几何问题课件文新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高考专题突破四高考中的立体几何问题考点自测课时作业题型分类 深度剖析内容索引考点自测1.正三棱柱ABC-A1B1C1中,D为BC中点,E为A1C1中点,则DE与平面A1B1BA的位置关系为A.相交B.平行C.垂直相交D.不确定答案解析如图取B1C1中点为F,连接EF,DF,DE,则EF∥A1B1,DF∥B1B,∴平面EFD∥平面A1B1BA,∴DE∥平面A1B1BA.2.设x、y、z是空间不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其
2、中使“x⊥z且y⊥z⇒x∥y”为真命题的是A.③④B.①③C.②③D.①②由正方体模型可知①④为假命题;由线面垂直的性质定理可知②③为真命题.答案解析3.(2016·成都模拟)如图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是A.20+3πB.24+3πC.20+4πD.24+4π答案解析根据几何体的三视图可知,该几何体是一个正方体和一个半圆柱的组合体,其中正方体的棱长为2,半圆柱的底面半径为1,母线长为2,故该几何体的表面积为4×5+2×π+2×π=20+3π.4.如图,在四棱锥V-ABCD中,底
3、面ABCD为正方形,E、F分别为侧棱VC、VB上的点,且满足VC=3EC,AF∥平面BDE,则=____.答案解析2连接AC交BD于点O,连接EO,取VE的中点M,连接AM,MF,∵VC=3EC,∴VM=ME=EC,又AO=CO,∴AM∥EO,又EO⊂平面BDE,∴AM∥平面BDE,又AF∥平面BDE,AM∩AF=A,∴平面AMF∥平面BDE,又MF⊂平面AMF,∴MF∥平面BDE,又MF⊂平面VBC,平面VBC∩平面BDE=BE,5.如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.若PA⊥AC,
4、PA=6,BC=8,DF=5.则直线PA与平面DEF的位置关系是________;平面BDE与平面ABC的位置关系是________.(填“平行”或“垂直”)答案解析平行垂直①因为D,E分别为棱PC,AC的中点,所以DE∥PA.又因为PA⊄平面DEF,DE⊂平面DEF,所以直线PA∥平面DEF.②因为D,E,F分别为棱PC,AC,AB的中点,PA=6,BC=8,所以DE∥PA,DE=PA=3,EF=BC=4.又因为DF=5,故DF2=DE2+EF2,所以∠DEF=90°,即DE⊥EF.又PA⊥AC,DE∥PA,所以DE
5、⊥AC.因为AC∩EF=E,AC⊂平面ABC,EF⊂平面ABC,所以DE⊥平面ABC,又DE⊂平面BDE,所以平面BDE⊥平面ABC.题型分类 深度剖析例1(2016·全国甲卷)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.(1)证明:AC⊥HD′;题型一 求空间几何体的表面积与体积证明由已知得AC⊥BD,AD=CD,故AC∥EF,由此得EF⊥HD,折后EF与HD保持垂直关系,即EF⊥HD′,所以AC⊥HD′.解答所以OH=
6、1,D′H=DH=3,故OD′⊥OH.由(1)知AC⊥HD′,又AC⊥BD,BD∩HD′=H,所以AC⊥平面DHD′,于是AC⊥OD′,又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC.(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.思维升华跟踪训练1正
7、三棱锥的高为1,底面边长为2,内有一个球与它的四个面都相切(如图).求:(1)这个正三棱锥的表面积;解答(2)这个正三棱锥内切球的表面积与体积.解答设正三棱锥P-ABC的内切球球心为O,连接OP,OA,OB,OC,而O点到三棱锥的四个面的距离都为球的半径r.∴VP-ABC=VO-PAB+VO-PBC+VO-PAC+VO-ABC题型二 空间点、线、面的位置关系例2(2016·济南模拟)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证
8、:平面ABE⊥平面B1BCC1;证明在三棱柱ABC-A1B1C1中,BB1⊥底面ABC.因为AB⊂平面ABC,所以BB1⊥AB.又因为AB⊥BC,BC∩BB1=B,所以AB⊥平面B1BCC1.又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.证明(2)求证:C1F∥平面ABE;方法一如图1,取AB中点G,连接EG,FG.因为E
此文档下载收益归作者所有