欢迎来到天天文库
浏览记录
ID:31307937
大小:16.84 MB
页数:80页
时间:2019-01-07
《高考数学大一轮复习 高考专题突破四 高考中的立体几何问题课件 理 苏教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高考专题突破四高考中的立体几何问题考点自测课时作业题型分类 深度剖析内容索引考点自测1.正三棱柱ABC-A1B1C1中,D为BC中点,E为A1C1中点,则DE与平面A1B1BA的位置关系为______.答案解析如图取B1C1的中点为F,连结EF,DF,DE,则EF∥A1B1,DF∥B1B,∴平面EFD∥平面A1B1BA,∴DE∥平面A1B1BA.平行2.设x、y、z是空间不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“x⊥z且y⊥z⇒
2、x∥y”为真命题的是______.答案解析②③由正方体模型可知①④为假命题;由线面垂直的性质定理可知②③为真命题.3.(2016·无锡模拟)如图,在棱长为6的正方体ABCD-A1B1C1D1中,E,F分别在C1D1与C1B1上,且C1E=4,C1F=3,连结EF,FB,DE,BD,则几何体EFC1-DBC的体积为_____.答案解析66如图,连结DF,DC1,那么几何体EFC1-DBC被分割成三棱锥D-EFC1及四棱锥D-CBFC1,那么几何体EFC1-DBC的体积为V=××3×4×6+××(3+6)×6×6=12+54=
3、66.故所求几何体EFC1-DBC的体积为66.4.(2016·镇江模拟)设α,β,γ是三个平面,a,b是两条不同直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且______,则a∥b”为真命题,则可以在横线处填入的条件是_______.(把所有正确的序号填上)答案解析①或③由线面平行的性质定理可知,①正确;当b∥β,a⊂γ时,a和b在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.5.如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,
4、AB的中点.若PA⊥AC,PA=6,BC=8,DF=5.则直线PA与平面DEF的位置关系是______;平面BDE与平面ABC的位置关系是_______.(填“平行”或“垂直”)答案解析平行垂直①因为D,E分别为棱PC,AC的中点,所以DE∥PA.又因为PA⊄平面DEF,DE⊂平面DEF,所以直线PA∥平面DEF.②因为D,E,F分别为棱PC,AC,AB的中点,PA=6,BC=8,所以DE∥PA,DE=PA=3,EF=BC=4.又因为DF=5,故DF2=DE2+EF2,又PA⊥AC,DE∥PA,所以DE⊥AC.因为AC∩E
5、F=E,AC⊂平面ABC,EF⊂平面ABC,所以DE⊥平面ABC,又DE⊂平面BDE,所以∠DEF=90°,即DE⊥EF.所以平面BDE⊥平面ABC.题型分类 深度剖析题型一 求空间几何体的表面积与体积例1(2016·全国甲卷)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.(1)证明:AC⊥HD′;证明由已知得AC⊥BD,AD=CD,又由AE=CF得,故AC∥EF,由此得EF⊥HD,折后EF与HD保持垂直关系,即EF⊥HD′,所
6、以AC⊥HD′.(2)若AB=5,AC=6,AE=,OD′=,求五棱锥D′-ABCFE的体积.解答由EF∥AC得.由AB=5,AC=6得DO=BO==4,所以OH=1,D′H=DH=3,于是OD′2+OH2=()2+12=9=D′H2,由(1)知AC⊥HD′,又AC⊥BD,BD∩HD′=H,所以AC⊥平面DHD′,于是AC⊥OD′,又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC.故OD′⊥OH.又由得EF=.五边形ABCFE的面积所以五棱锥D′-ABCFE的体积(1)若所给定的几何体是柱体、锥体或台体等规则几何体
7、,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.思维升华跟踪训练1正三棱锥的高为1,底面边长为,内有一个球与它的四个面都相切(如图).求:(1)这个正三棱锥的表面积;解答底面正三角形中心到一边的距离为则正棱锥侧面的斜高为(2)这个正三棱锥内切球的表面积与体积.解答设正三棱锥P-ABC的内切球的球心为O,连结OP,OA
8、,OB,OC,而O点到三棱锥的四个面的距离都为球的半径r.∴VP-ABC=VO-PAB+VO-PBC+VO-PAC+VO-ABC∴S内切球=4π(-2)2=(40-16)π.题型二 空间点、线、面的位置关系例2(2016·扬州模拟)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1
此文档下载收益归作者所有