欢迎来到天天文库
浏览记录
ID:30501792
大小:9.10 MB
页数:104页
时间:2018-12-30
《参赛作品 平面力系》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、平面力系1参赛选手:*****第二章平面力系§2-1平面汇交力系§2-2平面力对点之矩.平面力偶§2-3平面任意力系的简化§2-4平面任意力系的平衡条件和平衡方程§2-5物体系的平衡·静定和超静定问题§2-6平面简单桁架的内力计算2§2-1平面汇交力系一、平面汇交力系合成的几何法1.两个共点力的合成合力由力的平行四边形法则求得,也可用力的三角形求得。大小也可由余弦定理确定:AF2F1aFRjAF2F1FRj180º-a3合力方向由正弦定理确定:2.任意个共点力的合成F1F2F3F4FRAAF1F2FR1F3FR2F4FRAF1F2F3F4AF2F4F3F1FR力多边形
2、:各力顺次首尾相接,合力从第一个力起点指向最后一个力的末端。结论:即:4二、平面汇交力系平衡的几何条件在上面几何法求力系的合力中,合力为零意味着力多边形自行封闭。所以平面汇交力系平衡的必要与充分的几何条件是:平面汇交力系平衡的充要条件是:力多边形首尾相接自行封闭或力系中各力的矢量和等于零即:平面汇交力系的合力等于各分力的矢量和,合力的作用线通过各力的汇交点。FRAF1F2F3F4F55例2-1、如图,欲将碾子拉过障碍物,求在中心作用的水平力F的大小和碾子对障碍物的压力。(P=20KN,r=0.6m,h=0.08m)由几何关系得1、选碾子为研究对象2、取分离体画受力图解
3、:当碾子刚离地面时FNA=0FNBOABPFa3、根据平面汇交力系的平衡条件,得封闭的力三角形。PaFNBF6由作用力和反作用力的关系,碾子对障碍物的压力等于23.1kN。此题也可用比例尺去量。F=11.5kN,FNB=23.1kN所以:几何法解题步骤:1、选研究对象;2、作出受力图;3、选择适当的比例尺,作力多边形;4、求出未知数(量得或用三角公式)几何法解题不足:1、精度不够,误差大2、作图要求精度高;3、不能表达各个量之间的函数关系。接下来介绍研究平面汇交力系合成与平衡的另一种方法:解析法。7三、力在坐标轴上的投影及分量力在坐标轴上的投影力的投影是代数量,当力与
4、轴之间的夹角为锐角时,其值为正,当夹角为钝角时,其值为负。力沿坐标轴的分解:反之,已知力的投影,也可以求力的大小和方向yxOAFFxFyabFxFy8四、合力投影定理合力投影定理:合力在任一轴上的投影,等于各分力在同一轴上投影的代数和。合力的大小:方向:为该力系的汇交点或作用点:9五、平面汇交力系平衡的解析条件平面汇交力系平衡的必要与充分条件是该力系的合力为零。即:平面汇交力系平衡的充要条件即平衡方程为:六、求解平面汇交力系平衡问题的解题步骤1、取研究对象2、画出受力图3、选投影轴,列平衡方程4、求解10例2-2、已知P=2kN求FCD,FA。解1、取AB为研究对象2
5、、画出受力图3、选投影轴,列平衡方程PFCDEFAj45ºyx由EB=BC=0.4m,4、求解:11例2-3、如图,已知P、Q,求平衡时a及地面反力FND。解:2、画受力图1、取轮A为研究对象3、选投影轴,列平衡方程ADQFNDFT1FT2ayx(1)由(1)得(2)由(2)得4、求解:12例2-4、求当F力达到多大时,球离开地面?已知P、R、h。FN1FFNOBPF'N一、研究球解:1、受力如图:2、选投影轴,列平衡方程yxFN2求解得:二、研究块1、受力如图:yx2、选投影轴,列平衡方程求解得:132、选研究对象时,一般先考虑与所求力相关,且受已知力作用的物体,且
6、未知力不超过两个。解题技巧及说明:3、投影轴可任意选取,但一般选择与未知力垂直,最好使每个方程中只有一个未知数。即力求每列一方程求得一未知数。4、解析法解题时,力的方向可以任意设,如果求出负值,说明力方向与假设相反。对于二力构件,一般先设为拉力,如果求出负值,说明物体受压力。1、平面汇交力系只有2个独立的静力平衡方程,最多只能求解两个未知量(包括力的大小与方向)。14§2-2平面力对点之矩.平面力偶力对刚体的效应:移动效应:取决于力的大小、方向转动效应:取决于力矩的大小、方向AFBh一、力对点的矩力对点的矩为代数量(标量)O——矩心h——力臂“+”——使物体逆时针转时
7、力矩为正;“-”——使物体顺时针转时力矩为负。力对点的矩的取决于:力(大小、方向、作用点)、矩心的位置15定理:平面汇交力系的合力对平面内任一点的矩,等于所有各分力对同一点的矩的代数和。即:二、合力矩定理三、力矩与合力矩的解析表达式yxOAFqFxFy(x,y)力矩的解析表达式:合力矩的解析表达式:16例2-5、如图,已知F、Q、l。求MO(F)及MO(Q)OlQAdFa解:1、用力对点的矩法(定义)2、应用合力矩定理FxFy17练习:计算下面各图中力F对O点的矩18例2-6、三角形分布载荷作用在水平梁上,如图所示。最大载荷强度为q,梁长l。试求该力
此文档下载收益归作者所有