arima 模型在我国对外贸易中的应用

arima 模型在我国对外贸易中的应用

ID:30254685

大小:208.50 KB

页数:16页

时间:2018-12-28

arima 模型在我国对外贸易中的应用_第1页
arima 模型在我国对外贸易中的应用_第2页
arima 模型在我国对外贸易中的应用_第3页
arima 模型在我国对外贸易中的应用_第4页
arima 模型在我国对外贸易中的应用_第5页
资源描述:

《arima 模型在我国对外贸易中的应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、.ARIMA模型在我国对外贸易中的应用摘要:新中国已成立58年,在这58年中中国发生了翻天覆地的变化。随着改革开放的实施,中国逐步打开国门,与世界接轨,逐步发展成为国际化大国。全国进出口贸易总额在很大程度上可以反映这一情况,本文选取该指标来研究中国近年来国际贸易情况,并预测未来国际贸易趋势。尤其是自1994年中国实行盯住美元的汇率制度以来,中国的贸易差额开始了持续的正盈余。2001年中国加入WTO后,对外贸易额大幅度增加,中国在国际舞台中的地位日益提升。近年来,美国、欧盟、中国香港在中国对外出口中的份额有所增加,而出口到日本的份额下降。美国、欧盟、日本等主要经济体的经济发展态势对于

2、中国的外贸出口影响大。与此同时,中国外贸依存度也出现了巨大的变化。1985~2005年,中国对外贸易年均增长比国民经济增长快9个百分点,外贸依存度从1985年的21.4%提高到2005年的80.2%。特别是在加入WTO后,外贸依存度与出口依存度出现了直线上升势头。中国出口拉动战略型战略由此可见。在出口拉动下,通常会低估本币,反应在汇率上就会表现为汇率持续的上升。本文首先介绍了时间序列模型的基本概念,然后在实证中,本文所用数据为1950年-2005年全国进出口贸易总额,数据来源于《新中国50年统计年鉴》第60页。该表1979年以前为外贸业务统计数,从1980年起为海关进出口统计数,单

3、位为亿元人民币。关键词:时间序列;ARMA模型;ARIMA模型;对外贸易一、时间序列模型的基本概念(一)时间序列模型的介绍随机时间序列模型(timeseriesmodeling)是指仅用它的过去值及随机扰动项所建立起来的模型,其一般形式为Xt=F(Xt-1,Xt-2,…,mt)1.纯AR(p)过程Xt=j1Xt-1+j2Xt-2+…+jpXt-p+mt(*)如果随机扰动项是一个白噪声(mt=et),则称(*)式为一纯AR(p)过程(pure页.AR(p)process),记为:Xt=j1Xt-1+j2Xt-2+…+jpXt-p+et2.纯MA(q过程如果随机扰动项不是一个白噪声,通

4、常认为它是一个q阶的移动平均(movingaverage)过程MA(q):mt=et-q1et-1-q2et-2-¼-qqet-q该式给出了一个纯MA(q)过程(pureMA(p)process)。3.一般的自回归移动平均(autoregressivemovingaverage)过程ARMA(p,q)将纯AR(p)与纯MA(q)结合,得到一个一般的自回归移动平均(autoregressivemovingaverage)过程ARMA(p,q):Xt=j1Xt-1+j2Xt-2+…+jpXt-p+et-q1et-1-q2et-2-¼-qqet-q该式表明:(1)一个随机时间序列可以通过

5、一个自回归移动平均过程生成,即该序列可以由其自身的过去或滞后值以及随机扰动项来解释。(2)如果该序列是平稳的,即它的行为并不会随着时间的推移而变化,那么我们就可以通过该序列过去的行为来预测未来。这也正是随机时间序列分析模型的优势所在。4.自回归单整移动平均时间序列ARIMA(p,d,q)ARIMA模型全称为自回归移动平均模型(AutoregressiveIntegratedMovingAverageModel,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出的一著名时间序列预测方法,所以又称为box-jenkins模型、博克思-詹金斯法。其中ARIM

6、A(p,d,q)称为差分自回归移动平均模型,AR是自回归,p为自回归项;MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。如果我们将一个非平稳时间序列通过d次差分,将它变为平稳的,然后用一个平稳的ARMA(p,q)模型作为它的生成模型,则我们就说该原始时间序列是一个自回归单整移动平均(autoregressiveintegratedmovingaverage页.)时间序列,记为ARIMA(p,d,q)。ARIMA模型的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。这个模型一旦被识别后就可以从时间序列的过去

7、值及现在值来预测未来值。现代统计方法、计量经济模型在某种程度上已经能够帮助企业对未来进行预测。ARIMA模型预测的基本程序:(1)根据时间序列的散点图、自相关函数和偏自相关函数图以ADF单位根检验其方差、趋势及其季节性变化规律,对序列的平稳性进行识别。一般来讲,经济运行的时间序列都不是平稳序列。(2)对非平稳序列进行平稳化处理。如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理,如果数据存在异方差,则需对数据进行技术处理,直到处理后的数据的自

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。