欢迎来到天天文库
浏览记录
ID:29807261
大小:476.06 KB
页数:13页
时间:2018-12-23
《2016高考数学大一轮复习 12.3几何概型教师用书 理 苏教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§12.3 几何概型1.几何概型设D是一个可度量的区域(例如线段、平面图形、立体图形等),每个基本事件可以视为从区域D内随机地取一点,区域D内的每一点被取到的机会都一样;随机事件A的发生可以视为恰好取到区域D内的某个指定区域d中的点.这时,事件A发生的概率与d的测度(长度、面积、体积等)成正比,与d的形状和位置无关.把满足这样条件的概率模型称为几何概型.2.在几何概型中,事件A的概率计算公式P(A)=.3.几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.【思考辨析】判断下面结论是否正确(请在括号
2、中打“√”或“×”)(1)在一个正方形区域内任取一点的概率是零.( √ )(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √ )(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √ )(4)与面积有关的几何概型的概率与几何图形的形状有关.( × )(5)从区间[1,10]内任取一个数,取到1的概率是P=.( × )1.在线段[0,3]上任投一点,则此点坐标小于1的概率为________.答案 解析 坐标小于1的区间为[0,1],长度为1,[0,3]区间长度为3,故所求概率为.2.(2014·辽宁
3、改编)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是________.答案 解析 设质点落在以AB为直径的半圆内为事件A,则P(A)===.3.(2014·福建)如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.答案 0.18解析 由题意知,这是个几何概型问题,==0.18,∵S正=1,∴S阴=0.18.4.(2013·山东)在区间[-3,3]上随机取一个数x使得
4、x+1
5、-
6、x-2
7、≥1成立的概率为________.答案 解析 由绝对值的几何
8、意义知:使
9、x+1
10、-
11、x-2
12、≥1成立的x值为x∈[1,3],由几何概型知所求概率为P===.题型一 与长度、角度有关的几何概型例1 (1)在区间[-1,1]上随机取一个数x,求cosx的值介于0到之间的概率.(2)如图所示,在△ABC中,∠B=60°,∠C=45°,高AD=,在∠BAC内作射线AM交BC于点M,求BM<1的概率.解 (1)如图,由函数y=cosx的图象知,当-113、,所以BD==1,∠BAD=30°.记事件N为“在∠BAC内作射线AM交BC于点M,使BM<1”,则可得∠BAM<∠BAD时事件N发生.由几何概型的概率公式,得P(N)==.思维升华 几何概型有两个特点:一是无限性;二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率. (1)(2014·湖南改编)在区间[-2,3]上随机选取一个数X,则X≤1的概率为________.(2)在半径为1的圆内的一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率是________.答案 14、(1) (2)解析 (1)在区间[-2,3]上随机选取一个数X,则X≤1,即-2≤X≤1的概率为P=.(2)记事件A为“弦长超过圆内接等边三角形的边长”,如图,不妨在过等边三角形BCD的顶点B的直径BE上任取一点F作垂直于直径的弦,当弦为CD时,就是等边三角形的边长(此时F为OE中点),弦长大于CD的充要条件是圆心O到弦的距离小于OF,由几何概型公式得:P(A)==.题型二 与面积、体积有关的几何概型例2 (1)设不等式组表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是________.(2)有一个底面圆的半径为1、高为2的圆柱,点O为这15、个圆柱底面圆的圆心,在这个圆柱内随机取一点P,则点P到点O的距离大于1的概率为________.思维点拨 求随机点所在区域与所有区域的面积或体积比.答案 (1) (2)解析 (1)如图所示,正方形OABC及其内部为不等式组表示的区域D,且区域D的面积为4,而阴影部分表示的是区域D内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是.(2)先求点P到点O的距离小于或等于1的概率,圆柱的体积V圆柱=π×12×2=2π,以O为球心,1为半径且在圆柱内部的半球的体积V半球=×π×13=π.则点P到点O的距离小于或等于
13、,所以BD==1,∠BAD=30°.记事件N为“在∠BAC内作射线AM交BC于点M,使BM<1”,则可得∠BAM<∠BAD时事件N发生.由几何概型的概率公式,得P(N)==.思维升华 几何概型有两个特点:一是无限性;二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率. (1)(2014·湖南改编)在区间[-2,3]上随机选取一个数X,则X≤1的概率为________.(2)在半径为1的圆内的一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率是________.答案
14、(1) (2)解析 (1)在区间[-2,3]上随机选取一个数X,则X≤1,即-2≤X≤1的概率为P=.(2)记事件A为“弦长超过圆内接等边三角形的边长”,如图,不妨在过等边三角形BCD的顶点B的直径BE上任取一点F作垂直于直径的弦,当弦为CD时,就是等边三角形的边长(此时F为OE中点),弦长大于CD的充要条件是圆心O到弦的距离小于OF,由几何概型公式得:P(A)==.题型二 与面积、体积有关的几何概型例2 (1)设不等式组表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是________.(2)有一个底面圆的半径为1、高为2的圆柱,点O为这
15、个圆柱底面圆的圆心,在这个圆柱内随机取一点P,则点P到点O的距离大于1的概率为________.思维点拨 求随机点所在区域与所有区域的面积或体积比.答案 (1) (2)解析 (1)如图所示,正方形OABC及其内部为不等式组表示的区域D,且区域D的面积为4,而阴影部分表示的是区域D内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是.(2)先求点P到点O的距离小于或等于1的概率,圆柱的体积V圆柱=π×12×2=2π,以O为球心,1为半径且在圆柱内部的半球的体积V半球=×π×13=π.则点P到点O的距离小于或等于
此文档下载收益归作者所有