欢迎来到天天文库
浏览记录
ID:29757293
大小:102.00 KB
页数:5页
时间:2018-12-23
《导数练习题及答案:导数的概念》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、导数定义的利用例若,则等于()A.B.C.D.以上都不是分析:本题考查的是对导数定义的理解,根据导数定义直接求解即可解:由于,应选A求曲线方程的斜率和方程例已知曲线上一点,用斜率定义求:(1)点A的切线的斜率(2)点A处的切线方程分析:求曲线在A处的斜率,即求解:(1)(2)切线方程为即说明:上述求导方法也是用定义求运动物体在时刻处的瞬时速度的步骤.判断分段函数的在段点处的导数例已知函数,判断在处是否可导?分析:对分段函数在“分界点”处的导数问题,要根据定义来判断是否可导.解:∴在处不可导.说明:函数在某一点的导数,是指
2、一个极限值,即,当;包括;,判定分段函数在“分界处”的导数是否存在时,要验证其左、右极限是否存在且相等,如果存在且相等,才能判定这点存在导数,否则不存在导数.利用导数定义的求解例设函数在点处可导,试求下列各极限的值.1.;2.3.若,则等于()A.-1B.-2C.-1D.分析:在导数的定义中,增量的形式是多种多样的,但不论选择哪种形式,也必须选择相对应的形式.利用函数在点处可导的条件,可以将已给定的极限式班等变形转化为导数定义的结构形式.解:1.原式=2.原式=3.(含),∴故选A.说明:概念是分析解决问题的重要依据,只
3、有熟练掌握概念的本质属性,把握其内涵与外延,才能灵活地应用概念进行解题,不能准确分析和把握给定的极限式与导数的关系,盲目套用导数的定义是使思维受阻的主要原因.解决这类问题的关键就是等价变形,使问题转化.利用定义求导数例1.求函数在处的导数;2.求函数(a、b为常数)的导数.分析:根据导数的概念求函数的导数是求导数的基本方法,确定函数在处的导数有两种方法,应用导数定义法和导函数的函数值法.解:1.解法一(导数定义法):,解法二(导函数的函数值法):,∴2.说明:求导其本质是求极限,在求极限的过程中,力求使所求极限的结构形式
4、转化为已知极限的形式,即导数的定义,这是能够顺利求导的关键,因此必须深刻理解导数的概念.证明函数的在一点处连续例证明:若函数在点处可导,则函数在点处连续.分析:从已知和要证明的问题中去寻求转化的方法和策略,要证明在点处连续,必须证明.由于函数在点处可导,因此,根据函数在点处可导的定义,逐步实现两个转化,一个是趋向的转化,另一个是形式(变为导数定义形式)的转化.解:证法一:设,则当时,,∴函数在点处连续.证法二:∵函数在点处可导,∴在点处有∴∴函数在点处连续.说明:对于同一个问题,可以从不同角度去表述,关键是要透过现象看清
5、问题的本质,正确运用转化思想来解决问题.函数在点处连续,有极限以及导数存在这三者之间的关系是:导数存在连续有极限.反之则不一定成立.证题过程中不能合理实现转化,而直接理解为是使论证推理出现失误的障碍.
此文档下载收益归作者所有