2015-2016学年高中数学 2.2.4平面与平面平行的性质练习 新人教a版必修2

2015-2016学年高中数学 2.2.4平面与平面平行的性质练习 新人教a版必修2

ID:29560551

大小:309.56 KB

页数:8页

时间:2018-12-21

2015-2016学年高中数学 2.2.4平面与平面平行的性质练习 新人教a版必修2_第1页
2015-2016学年高中数学 2.2.4平面与平面平行的性质练习 新人教a版必修2_第2页
2015-2016学年高中数学 2.2.4平面与平面平行的性质练习 新人教a版必修2_第3页
2015-2016学年高中数学 2.2.4平面与平面平行的性质练习 新人教a版必修2_第4页
2015-2016学年高中数学 2.2.4平面与平面平行的性质练习 新人教a版必修2_第5页
资源描述:

《2015-2016学年高中数学 2.2.4平面与平面平行的性质练习 新人教a版必修2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、【成才之路】2015-2016学年高中数学2.2.4平面与平面平行的性质练习新人教A版必修2基础巩固一、选择题1.若两个平面与第三个平面相交有两条交线且两条交线互相平行,则这两个平面(  )A.有公共点B.没有公共点C.平行D.平行或相交[答案] D2.有一正方体木块如图所示,点P在平面A′C′内,棱BC平行于平面A′C′,要经过P和棱BC将木料锯开,锯开的面必须平整,有N种锯法,则N为(  )A.0B.1C.2D.无数[答案] B[解析] ∵BC∥平面A′C′,∴BC∥B′C′,在平面A′C′上过P

2、作EF∥B′C′,则EF∥BC,∴沿EF、BC所确定的平面锯开即可.又由于此平面唯一确定,∴只有一种方法,故选B.3.下列命题中不正确的是(  )A.平面α∥平面β,一条直线a平行于平面α,则a一定平行于平面βB.平面α∥平面β,则α内的任意一条直线都平行于平面βC.一个三角形有两条边所在的直线分别平行于一个平面,那么该三角形所在的平面与这个平面平行D.分别在两个平行平面内的两条直线只能是平行直线或异面直线[答案] A[解析] 对于A,直线a可能与β平行,也可能在β内,故A不正确;三角形的两条边必相交

3、,这两条相交边所在直线平行于一个平面,那么三角形所在的平面与这个平面平行,所以C正确;依据平面与平面平行的性质定理可知B,D也正确,故选A.4.已知a,b表示直线,α,β,γ表示平面,则下列推理正确的是(  )A.α∩β=a,b⊂α⇒a∥bB.α∩β=a,a∥b⇒b∥α且b∥βC.a∥β,b∥β,a⊂α,b⊂α⇒α∥βD.α∥β,α∩γ=a,β∩γ=b⇒a∥b[答案] D[解析] 选项A中,α∩β=a,b⊂α,则a,b可能平行也可能相交,故A不正确;选项B中,α∩β=a,a∥b,则可能b∥α且b∥β,

4、也可能b在平面α或β内,故B不正确;选项C中,a∥β,b∥β,a⊂α,b⊂α,根据面面平行的判定定理,再加上条件a∩b=A,才能得出α∥β,故C不正确;选项D为面面平行性质定理的符号语言,故选D.5.已知两条直线m,n两个平面α,β,给出下面四个命题:①α∩β=m,n⊂α⇒m∥n或者m,n相交;②α∥β,m⊂α,n⊂β⇒m∥n;③m∥n,m∥α⇒n∥α;④α∩β=m,m∥n⇒n∥β且n∥α.其中正确命题的序号是(  )A.①B.①④C.④D.③④[答案] A6.平面α∥平面β,△ABC,△A′B′C′

5、分别在α、β内,线段AA′,BB′,CC′共点于O,O在α、β之间.若AB=2,AC=1,∠BAC=60°,OAOA′=32,则△A′B′C′的面积为(  )A.B.C.D.[答案] C[解析] 如图∵α∥β,∴BC∥B′C′,AB∥A′B′,AC∥A′C′,∴△ABC∽△A′B′C′,且由==知相似比为,又由AB=2,AC=1,∠BAC=60°,知S△ABC=AB·CD=AB·(AC·sin60°)=,∴S△A′B′C′=.二、填空题7.(2015·东莞模拟)如图是长方体被一平面所截得的几何体,

6、四边形EFGH为截面,则四边形EFGH的形状为________.[答案] 平行四边形[解析] ∵平面ABFE∥平面CDHG,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面CDHG=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH的形状是平行四边形.8.已知平面α∥平面β,点A,C∈α,点B,D∈β,直线AB,CD交于点S,且SA=8,SB=9,CD=34.(1)若点S在平面α,β之间,则SC=________.(2)若点S不在平面α,β之间,则SC=________.[答案] (1)16 

7、(2)272[解析] (1)如图a所示,因为AB∩CD=S,所以AB,CD确定一个平面,设为γ,则α∩γ=AC,β∩γ=BD.因为α∥β,所以AC∥BD.于是=,即=.所以SC===16.(2)如图b所示,同理知AC∥BD,则=,即=,解得SC=272.三、解答题9.(2013·山东)如图,四棱锥P-ABCD中,AB∥CD,AB=2CD,E为PB的中点.求证:CE∥平面PAD.[分析] 证明线面平行,有两种思路:(1)利用线面平行的判定定理,通过线线平行证明线面平行;(2)利用面面平行的性质,证明线面

8、平行.所以本题可以从两个角度考虑,一是在平面PAD中找与CE平行的直线,二是构造过CE且与平面PAD平行的平面.[解析] 方法一:如图所示,取PA的中点H,连接EH,DH.因为E为PB的中点,所以EH∥AB,EH=AB.又AB∥CD,CD=AB,所以EH∥CD,EH=CD.因此四边形DCEH是平行四边形,所以CE∥DH.又DH⊂平面PAD,CE⊄平面PAD,因此CE∥平面PAD.方法二:如图所示,取AB的中点F,连接CF,EF,所以AF=AB.又CD=A

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。