2018年高考数学 专题12.3 统计与统计案例试题 理

2018年高考数学 专题12.3 统计与统计案例试题 理

ID:29052244

大小:1.02 MB

页数:29页

时间:2018-12-16

2018年高考数学 专题12.3 统计与统计案例试题 理_第1页
2018年高考数学 专题12.3 统计与统计案例试题 理_第2页
2018年高考数学 专题12.3 统计与统计案例试题 理_第3页
2018年高考数学 专题12.3 统计与统计案例试题 理_第4页
2018年高考数学 专题12.3 统计与统计案例试题 理_第5页
资源描述:

《2018年高考数学 专题12.3 统计与统计案例试题 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、统计与统计案例【三年高考】1.【2017课标3,理3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A【解析】观察折线图,每年7月到8月折线图呈下降趋势,月接待游客量减少,选项A说法错误;折线图整体呈现出增长的趋势,年接待游客量逐年增加,

2、选项B说法正确;每年的接待游客量七八月份达到最高点,即各年的月接待游客量高峰期大致在7,8月,选项C说法正确;每年1月至6月的月折线图平稳,月接待游客量波动性更小,7月至12月折线图不平稳,月接待游客量波动性大,选项D说法正确;2.【2017山东,理5】为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程为.已知,,.该班某学生的脚长为24,据此估计其身高为(A)(B)(C)(D)【答案】C【解析】由已知,选C.3.【2017江苏,3】某

3、工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取▲件.【答案】18【解析】所求人数为,故答案为18.4.【2017课标II,理18】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg)某频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(

4、2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)附:(2)根据箱产量的频率分布直方图得列联表箱产量箱产量旧养殖法6238新养殖法3466由于,故有的把握认为箱产量与养殖方法有关。(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于的直方图面积为,箱产量低于的直方图面积为,故新养殖法箱产量的中位数的估计值为。5.【2016高考新课标3理数】某旅游城市为向游客介绍本地的气温情况,绘

5、制了一年中月平均最高气温和平均最低气温的雷达图.图中点表示十月的平均最高气温约为,点表示四月的平均最低气温约为.下面叙述不正确的是()(A)各月的平均最低气温都在以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于的月份有5个【答案】D【解析】由图可知均在虚线框内,所以各月的平均最低气温都在0℃以上,A正确;由图可在七月的平均温差大于,而一月的平均温差小于,所以七月的平均温差比一月的平均温差大,B正确;由图可知三月和十一月的平均最高气温都大约在,基本相同,C正确;由图可知平均最高气温高于20℃

6、的月份有3个或2个,所以不正确.故选D.6.【2016高考山东理数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()(A)56(B)60(C)120(D)140【答案】D【解析】由频率分布直方图知,自习时间不少于22.5小时为后三组,有(人),选D.3.【2016高考江苏卷】已知一

7、组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________.【答案】0.1【解析】这组数据的平均数为,.故答案应填:0.1,7.【2016高考新课标3理数】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I)由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明;(II)建立关于的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:,,,≈2.646.参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为:.【解析】(Ⅰ

8、)由折线图这数据和附注中参考数据得,,,,.因为与的相关系数近似为0.99,说明与的线性相关相当高,从而可以用线性回归模型拟合与的关系.8.【2015高考重庆,理3】重庆市201

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。