欢迎来到天天文库
浏览记录
ID:28984820
大小:2.60 MB
页数:32页
时间:2018-12-15
《(新课标版)备战2019高考数学二轮复习专题1.4数列、不等式教学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题1.4数列、不等式一.考场传真1.【2017课标1,理4】记为等差数列的前项和.若,,则的公差为A.1B.2C.4D.8【答案】C2.【2017课标II,理3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【答案】B【解析】设塔的顶层共有灯盏,则各层的灯数构成一个首项为,公比为2的等比数列,结合等比数列
2、的求和公式有:,解得,即塔的顶层共有灯3盏,故选B.3.【2017课标1,理12】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是A.440
3、B.330C.220D.110【答案】A4.【2017课标II,理5】设,满足约束条件,则的最小值是()A.B.C.D.【答案】A【解析】绘制不等式组表示的可行域,目标函数即:,其中表示斜率为的直线系与可行域有交点时直线的截距值,数形结合可得目标函数在点处取得最小值,故选A.5.【2017课标3,理9】等差数列的首项为1,公差不为0.若a2,a3,a6成等比数列,则前6项的和为A.B.C.3D.8【答案】A6.【2017课标3,理13】若,满足约束条件,则的最小值为__________.【答案】【解
4、析】绘制不等式组表示的可行域,目标函数即:,其中表示斜率为的直线系与可行域有交点时直线的截距值的倍,截距最大的时候目标函数取得最小值,数形结合可得目标函数在点处取得最小值.7.【2017课标3,理14】设等比数列满足a1+a2=–1,a1–a3=–3,则a4=___________.【答案】【解析】设等比数列的公比为,很明显,结合等比数列的通项公式和题意可得方程组:,由可得:,代入①可得,由等比数列的通项公式可得:.8.【2017课标II,理15】等差数列的前项和为,,,则.【答案】9.【2017课
5、标1,理13】设x,y满足约束条件,则的最小值为.【答案】【解析】不等式组表示的可行域如图所示,易求得,由得在轴上的截距越大,就越小,所以,当直线直线过点时,取得最小值,所以取得最小值为二.高考研究【考纲解读】1.考纲要求(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式).(2)理解等差数列和等比数列的概念.(3)掌握等差数列和等比数列的通项公式与前n项和公式.(4)能在具体的问题情境中识别数列的等差关系或等比关系,在实际情形中运用数列知识解决实际问题..(5)了解等差数列与一次函数的
6、关系以及等比数列与指数函数的关系.(6)掌握非等差、等比数列求和的几种常见方法.(7)认识数列的函数特性,能结合方程、不等式和解析几何等知识解决一些数列综合题.不等式(1)不等关系:了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.(2)一元二次不等式 ①会从实际情境中抽象出一元二次不等式模型.②通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(3)二元一次不等式组与简单线性规划问题 ①会从实际
7、情境中抽象出二元一次不等式组.②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)基本不等式:掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.①了解基本不等式的证明过程.②会用基本不等式解决简单的最大(小)值问题.【命题规律】对等差数列与等比数列基本量的考查是重点内容,主要考查利用通项公式、前n项和公式建立方程组求解,属于低档题,主要是以选择、填空题的形式出现.对等差数列与等比数
8、列性质的考查是热点,具有“新、巧、活”的特点,考查利用性质解决有关的计算问题.数列的通项公式及递推公式的应用也是命题的热点,根据与的关系求通项公式以及利用构造或转化的方法求通项公式也是常考的热点.数列的求和问题,多以考查等差、等比数列的前n项和公式、错位相减法和裂项相消法为主,且考查频率较高,是高考命题的热点.选择、填空、解答题都有出现.数列与函数、不等式的综合问题也是高考考查的重点,主要考查利用函数的观点解决数列问题以及用不等式的方法研究数列的性质,多为中档题,以解
此文档下载收益归作者所有