欢迎来到天天文库
浏览记录
ID:28982386
大小:305.00 KB
页数:15页
时间:2018-12-15
《(全国通用版)2019版高考数学大一轮复习第八章解析几何第45讲椭圆优选学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第45讲 椭 圆考纲要求考情分析命题趋势1.掌握椭圆的定义、几何图形、标准方程及简单几何性质.2.了解圆锥曲线的简单应用,了解椭圆的实际背景.3.理解数形结合的思想.2017·全国卷Ⅱ,202016·全国卷Ⅲ,112016·天津卷,201.求解与椭圆定义有关的问题;利用椭圆的定义求轨迹方程;求椭圆的标准方程;判断椭圆焦点的位置.2.求解与椭圆的范围、对称性有关的问题;求解椭圆的离心率;求解与椭圆的焦点三角形有关的问题.分值:5~12分1.椭圆的定义平面内与两个定点F1,F2的距离之和等于常数(大于)的点的轨迹叫做!!
2、!!__椭圆__####.这两个定点叫做椭圆的!!!!__焦点__####,两焦点间的距离叫做椭圆的!!!!__焦距__####.集合P={M
3、+=2a},=2c,其中a>0,c>0,且a,c为常数.(1)若!!!!__a>c__####,则集合P为椭圆;(2)若!!!!__a=c__####,则集合P为线段;(3)若!!!!__a<c__####,则集合P为空集.2.椭圆的标准方程和几何性质标准方程+=1(a>b>0)+=1(a>b>0)图形性质范围!!!!__-a__####≤x≤!!!!__a__####,!!
4、!!__-b__####≤y≤!!!!__b__####!!!!__-b__####≤x≤!!!!__b__####,!!!!__-a__####≤y≤!!!!__a__####对称性对称轴:!!!!__坐标轴__####,对称中心:!!!!__(0,0)__####顶点A1!!!!__(-a,0)__####,A2!!!!__(a,0)__####,B1!!!!__(0,-b)__####,B2!!!!__(0,b)__####A1!!!!__(0,-a)__####,A2!!!!__(0,a)__####,B1!
5、!!!__(-b,0)__####,B2!!!!__(b,0)__####轴长轴A1A2的长为!!!!__2a__####,短轴B1B2的长为!!!!__2b__####焦距=!!!!__2c__####离心率e=!!!! ####,e∈!!!!__(0,1)__####a,b,c的关系c2=!!!!__a2-b2__####1.思维辨析(在括号内打“√”或“”).(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.( × )(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(
6、其中a为椭圆的长半轴长,c为椭圆的半焦距).( √ )(3)椭圆的离心率e越大,椭圆就越圆.( × )(4)椭圆既是轴对称图形,又是中心对称图形.( √ )解析 (1)错误.由椭圆的定义知,当该常数大于时,其轨迹才是椭圆,而常数等于时,其轨迹为线段F1F2,常数小于时,不存在图形.(2)正确.由椭圆的定义,得+=2a,又=2c,所以++=2a+2c.(3)错误.因为e===,所以e越大,则越小,椭圆就越扁.(4)正确.由椭圆的对称性知,其关于原点中心对称也关于两坐标轴对称.2.设P是椭圆+=1上的点,若F1,F2是椭
7、圆的两个焦点,则+=( C )A.4 B.8 C.6 D.18解析 由定义知+=2a=6.3.若方程+=1表示椭圆,则m的范围是( C )A.(-3,5) B.(-5,3)C.(-3,1)∪(1,5) D.(-5,1)∪(1,3)解析 由方程表示椭圆知解得-3<m<5且m≠1.4.(2018·广东惠州二调)设F1,F2为椭圆+=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则的值为( D )A. B. C. D.解析 如图,设线段PF1的中点为M,因为O是F1F2的中点,所以OM∥PF2,可
8、得PF2⊥x轴,
9、PF2
10、==,
11、PF1
12、=2a-
13、PF2
14、=,=.故选D.5.已知F1,F2是椭圆C的左、右焦点,点P在椭圆上,且满足=2,∠PF1F2=30°,则椭圆的离心率为!!!!____####.解析 在△PF1F2中,由正弦定理得sin∠PF2F1=1,即∠PF2F1=.设=1,则=2,=,所以离心率e==.一 椭圆的定义及应用椭圆定义的应用主要有两个方面:一是确认平面内与两定点有关的轨迹是否为椭圆;二是当P在椭圆上时,与椭圆的两焦点F1,F2组成的三角形通常称为“焦点三角形”,利用定义可求其周长,利用定
15、义和余弦定理可求·,通过整体代入可求其面积等.【例1】(1)如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是( A )A.椭圆B.双曲线C.抛物线 D.圆(2)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为椭圆C上的一点,且⊥
此文档下载收益归作者所有