欢迎来到天天文库
浏览记录
ID:28840574
大小:24.50 KB
页数:6页
时间:2018-12-14
《和圆有关的比例线段(一).doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、和圆有关的比例线段(一)教学目标:1、使学生理解相交弦定理及其推论;2、初步学会运用相交弦定理及其推论;3、使学生学会作线段的比例中项.4、在推导定理的过程中培养学生由图形总结出几何性质的能力;、在运用相交弦定理时,使学生清楚是运用几何性质,代数解法解有关弦长计算问题,培养学生的综合运用能力;教学重点:使学生正确理解相交弦定理及其推论,这是以后学习中非常重要的定理.和圆有关的比例线段(一)教学目标:1、使学生理解相交弦定理及其推论;2、初步学会运用相交弦定理及其推论;3、使学生学会作线段的比例中项.4、在推导定理的过程中培养学生由图形总结出几何性质的能力;、在运用相交弦定理
2、时,使学生清楚是运用几何性质,代数解法解有关弦长计算问题,培养学生的综合运用能力;教学重点:使学生正确理解相交弦定理及其推论,这是以后学习中非常重要的定理.教学难点:在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.而不能死记硬背,也不能只从形式上去认识定理,只知是线段的积,而对内容不加理解.教学过程:一、新引入:前边,我们已经学习了和圆有关的角,现在我们通过圆内一点引圆的两条弦,它们之间又有什么关系呢?二、新讲解:实际上,它们之间
3、存在着数量关系.不妨从⊙内一点P引圆的两条弦AB、D,我们称它们为相交弦,这时,各弦分别被P点分成二条线段,只要连结A、DB,我们马上发现这四条线段在两个三角形中,容易证得,这两个三角形是相似的,于是得到了这四条线段的比例线段,转化成乘积式后,便得到相交弦定理,教师指导学生观察相交弦定理中的两弦的位置是任意的,当两弦的位置特殊时,会出现怎样的情形呢?请同学打开练习本画一画.学生动手画,教师巡视.当图7-79三个图形都出现后,教师指出,当P点重合于圆心时,是两条直径的相交弦,结论是显然的,并且没有因为位置上的变化而发生形式上的变化.我们不研究这种情形,然后指导学生观察图7-7
4、9(3),这种特殊的位置:弦与直径垂直相交,会给相交弦定理带怎样形式上的改变呢?最终指导学生完成相交弦定理的推论及证明.1.相交弦定理:圆内的两条相交弦,被交点分成的两条线段的积相等.2.如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.相交弦定理及其推论是和圆有关的比例线段中的两个数量关系式,在今后学习中有着重要的意义,教师必须严格要求学生独立完成定理的证明,加深对定理的理解.练习一,P.126中1.如图7-80,AP=3,PB=,P=2,求D.(答案:8)练习二,教材P.126中2,如图7-81,是圆心,P⊥AB,AP=4,PD=2.求P.(答案:3
5、)此两题是直接运用定理或推论.P.12例1已知圆中两条弦相交,第一条弦被交点分为12和16两段,第二条弦的长为32,求第二条弦被交点分成的两段的长.分析,这是一道利用相交弦定理的计算题,由于无图对照,在叙述时务必讲清第几条弦,在由相交弦定理列出方程后,解一元二次方程只作为其中一个步骤.做答案时要特别注意,对x1、x2的解释,以防止最终出现两解.解法参照教材P.126.P126例2已知:线段a、b求作:线端,使2=ab分析题目,可将三条线段的数量关系转化为相交弦定理的推论.若线段作出,它将与线段a、b在圆中构成弦与直径垂直相交的位置关系.这时学生对作法心中有数,最终教师指导学
6、生完成作图.作法参照教材P.126.三、堂小结:指导学生阅读教材P.12—P.126.培养学生的读书习惯,并总结出本的主要内容:1.相交弦定理及其推论是圆中重要的比例线段,它反映了圆中两条相交弦的数量关系.推论是定理的特殊情形.二者只是形式上的不同,实质上都是一样的.需要指出的是相交弦定理涉及到四条线段,而它的推论涉及到三条线段.2.本节例1是利用相交弦定理进行计算,它是圆的有关计算题的重要部分.3.本节例2是运用相交弦定理的推论作图题,这是初中阶段务必要掌握的作图题之一,务必向学生讲清.四、布置作业1.教材P.132中9;P.133中14
此文档下载收益归作者所有