欢迎来到天天文库
浏览记录
ID:28295659
大小:253.00 KB
页数:8页
时间:2018-12-08
《初三圆的复习习题目》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、初三圆的复习习题【经典例题精讲】例1如图23-2,已知AB为⊙O直径,C为上一点,CD⊥AB于D,∠OCD的平分线CP交⊙O于P,试判断P点位置是否随C点位置改变而改变?分析:要确定P点位置,我们可采用尝试的办法,在上再取几个符合条件的点试一试,观察P点位置的变化,然后从中观察规律.解:连结OP,P点为中点.小结:此题运用垂径定理进行推断.例2下列命题正确的是()A.相等的圆周角对的弧相等B.等弧所对的弦相等C.三点确定一个圆D.平分弦的直径垂直于弦.解:A.在同圆或等圆中相等的圆周角所对的劣弧相等,所以A不正确.B.等弧就是在同圆或等圆中能重合的弧,因此B正确.C.三个点只有
2、不在同一直线上才能确定一个圆.D.平分弦(不是直径)的直径垂直于此弦.故选B.例3四边形ABCD内接于⊙O,∠A︰∠B︰∠C=1︰2︰3,求∠D.分析:圆内接四边形对角之和相等,圆外切四边形对边之和相等.解:设∠A=x,∠B=2x,∠C=3x,则∠D=∠A+∠C-∠B=2x.x+2x+3x+2x=360°,x=45°.∴∠D=90°.小结:此题可变形为:四边形ABCD外切于⊙O,周长为20,且AB︰BC︰CD=1︰2︰3,求AD的长.例4为了测量一个圆柱形铁环的半径,某同学采用如下方法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,用如图23-4所示方法得到相
3、关数据,进而可以求得铁环半径.若测得PA=5cm,则铁环的半径是__________cm.分析:测量铁环半径的方法很多,本题主要考查切线长性质定理、切线性质、解直角三角形的知识进行合作解决,即过P点作直线OP⊥PA,再用三角板画一个顶点为A、一边为AP、大小为60°的角,这个角的另一边与OP的交点即为圆心O,再用三角函数知识求解.解:.小结:应用圆的知识解决实际问题,应将实际问题变成数学问题,建立数学模型.例5已知相交于A、B两点,的半径是10,的半径是17,公共弦AB=16,求两圆的圆心距.解:分两种情况讨论:(1)若位于AB的两侧(如图23-8),设与AB交于C,连结,则垂
4、直平分AB,∴.又∵AB=16∴AC=8.在中,.在中,.故.(2)若位于AB的同侧(如图23-9),设的延长线与AB交于C,连结.∵垂直平分AB,∴.又∵AB=16,∴AC=8.在中,.在中,.故.注意:在圆中若要解两不等平行弦的距离、两圆相切、两圆相离、一个点到圆上各点的最大距离和最小距离、相交两圆圆心距等问题时,要注意双解或多解问题. 三、相关定理:1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条线,各弦被这点所分成的两段的积相等)说明:几何语言: 若弦AB、CD交于点P,则PA·PB=PC·PD(相交弦定理)例1.已知P为⊙O内一点
5、,,⊙O半径为,过P任作一弦AB,设,,则关于的函数关系式为 。解:由相交弦定理得,即,其中2.切割线定理 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项说明:几何语言:若AB是直径,CD垂直AB于点P,则PC^2=PA·PB例2.已知PT切⊙O于T,PBA为割线,交OC于D,CT为直径,若OC=BD=4cm,AD=3cm,求PB长。解:设TD=,BP=,由相交弦定理得:即 ,(舍)由切割线定理, 由勾股定理,∴ ∴∴四、辅助线总结1.圆中常见的辅助线1).作半径,利用同圆或等圆的半径相等.2).作弦心距,利用垂径定理进行证明或计算,或
6、利用“圆心、弧、弦、弦心距”间的关系进行证明.3).作半径和弦心距,构造由“半径、半弦和弦心距”组成的直角三角形进行计算.4).作弦构造同弧或等弧所对的圆周角.5).作弦、直径等构造直径所对的圆周角——直角.6).遇到切线,作过切点的弦,构造弦切角.7).遇到切线,作过切点的半径,构造直角.8).欲证直线为圆的切线时,分两种情况:(1)若知道直线和圆有公共点时,常连结公共点和圆心证明直线垂直;(2)不知道直线和圆有公共点时,常过圆心向直线作垂线,证明垂线段的长等于圆的半径.9).遇到三角形的外心常连结外心和三角形的各顶点.10).遇到三角形的内心,常作:(1)内心到三边的垂线;
7、(2)连结内心和三角形的顶点.11).遇相交两圆,常作:(1)公共弦;(2)连心线.12).遇两圆相切,常过切点作两圆的公切线.13).求公切线时常过小圆圆心向大圆半径作垂线,将公切线平移成直角三角形的一条直角边.2、圆中较特殊的辅助线1).过圆外一点或圆上一点作圆的切线.2).将割线、相交弦补充完整.3).作辅助圆.【中考热点】近年来,在中考中圆的应用方面考查较多,与一元二次方程、函数、三角函数、实际问题、作图等是中考中的热点,也是难点.例1(2003·北京市)如图23-10,AB是⊙O的
此文档下载收益归作者所有