《拓扑学的产生》ppt课件

《拓扑学的产生》ppt课件

ID:27527103

大小:686.51 KB

页数:42页

时间:2018-12-01

《拓扑学的产生》ppt课件_第1页
《拓扑学的产生》ppt课件_第2页
《拓扑学的产生》ppt课件_第3页
《拓扑学的产生》ppt课件_第4页
《拓扑学的产生》ppt课件_第5页
资源描述:

《《拓扑学的产生》ppt课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、拓扑学的产生试讲者:陶焕杰制作者:李士超陶焕杰丁莉曹娜陈飞飞三个阶段一,拓扑学的萌芽阶段(17-19世纪中期)二,拓扑学的发展阶段(19-20世纪初期)三,拓扑学的繁荣阶段(20世纪以后)一,拓扑学的萌芽阶段拓扑学起初叫形势分析学,形指一个图形本身的性质,势指一个图形与其子图形相对的性质是莱布尼茨1679年提出的名词。是近代发展起来的一个研究连续性现象的数学问题,当时主要研究的是出于数学分析的需要而产生的一些几何问题。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。在数学上,关于“哥尼斯堡七

2、桥问题”、“多面体的欧拉定理”、“四色问题”等都是拓扑学发展史的重要问题。前进哥尼斯堡七桥问题哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置?返回多面体的欧拉定理这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面

3、体、正二十面体。返回四色问题英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。返回上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。拓扑学是数学中一个重要的、基础性的分支。它

4、最初是几何学的一个分支,主要研究几何图形在连续变形下保持不变的性质,现在已成为研究连续性现象的重要的数学分支。连续性和离散性是自然界与社会现象中普遍存在的。拓扑学对连续性数学是带有根本意义的,对于离散性数学也起着巨大的推动作用。拓扑学的基本内容已经成为现代数学的常识。拓扑学的概念和方法在物理学、生物学、化学等学科中都有直接、广泛的应用。拓扑学是几何学的一个分支,它是从图论演变过来的。拓扑学将实体抽象成与其大小、形状无关的点,将连接实体的线路抽象成线,进而研究点、线、面之间的关系。网络拓扑通过结点与通信线路之间的几何关系来表示网络结构,反映出网络中

5、各个实体之间的结构关系。拓扑设计是建设计算机网络的第一步,也是实现各种网络协议的基础,它对网络性能、可靠性与通信代价有很大影响。网络拓扑主要是指通信子网的拓扑构型。组合拓扑学的奠基人是H.庞加莱。他是在分析学和力学的工作中,特别是关于复函数的单值化和关于微分方程决定的曲线的研究中,引向拓扑学问题的,但他的方法有时不够严密,他的主要兴趣在n维流形。在1895~1904年间,他创立了用剖分研究流形的基本方法。他引进了许多不变量:基本群、同调、贝蒂数、挠系数,并提出了具体计算的方法。他引进了许多不变量:基本群、同调、贝蒂数、挠系数,他探讨了三维流形的拓

6、扑分类问题,提出了著名的庞加莱猜想。他留下的丰富思想影响深远,但他的方法有时不够严密,过多地依赖几何直观。特别是关于复函数的单值化和关于微分方程决定的曲线的研究中,二,拓扑学的发展阶段十九世纪中期,黎曼在复函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。在点集论的思想影响下,黎曼本人解决了可定向闭曲面的同胚分类问题。如聚点(极限点)、开集、闭集、稠密性、连通性等

7、。在几何学的研究中黎曼明确提出n维流形的概念(1854)。得出许多拓扑概念,二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。拓扑学的另一渊源是分析学的严密化。他是在分析学和力学的工作中,实数的严格定义推动G.康托尔从1873年起系统地展开了欧氏空间中的点集的研究,得出许多拓扑概念,如聚点(极限点)

8、、开集、闭集、稠密性、连通性等。在点集论的思想影响下,分析学中出现了泛函数(即函数的函数)的观念,把函数集看成一种几何对象并讨论其中的极

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。