欢迎来到天天文库
浏览记录
ID:42547212
大小:77.01 KB
页数:4页
时间:2019-09-17
《拓扑学的产生与发展》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、拓扑学的产生与发展邓一凡0401120摘要:拓扑学作为数学上一个重要的分支,主要是研究各种“空间”在连续性的变化下不变的性质,自从18世纪开始出现萌芽以来,对微分几何,分析学,抽象代数,经济学等其他学科产生了重大的影响。而随着时代的发展,拓扑学更会在科学中起到更加重要的作用和影响力。Asanimportantbranchofmathematics,Topologyistostudyavarietyof"space"inthecontinuityoftheinvariantunderchangesinthenature,sincethe18th
2、centurybegantosproutsincethedifferentialgeometry,analyticalscience,abstractalgebra,economics,etc.otherdisciplineshavehadasignificantimpact.Withthedevelopmentofthetimes,topologyinsciencewillplayamoreimportantroleandhavemoreinfluence.关键字:拓扑学欧拉四色问题七桥问题庞加莱正文:拓扑学的定义:(1)Topology原
3、意为地貌,起源于希腊语Τοπολογ。形式上讲,拓扑学主要研究“拓扑空间”在“连续变换”下保持不变的性质。简单的说,拓扑学是研究连续性和连通性的一个数学分支。主要研究拓扑空间在拓扑变换下的不变性质和不变量拓扑学早期的发展:拓扑学最初被称为形势几何学,这是莱布尼茨于1679年提出的,他预见到现在所称的组合拓扑学.最早为人所知的拓扑学定理可能是所谓的欧拉公式,这是指任何闭的凸多面体的顶点数v,棱数e和面数f有关系v-e+f=2.用现代说法,它是一个拓扑不变量,称为欧拉示性数.但据史学家考证,笛卡儿在1639年就知道它,并且莱布尼茨通过笛卡儿未发表
4、的手稿于1675年得知这一结果.另一著名的结果是哥尼斯堡七桥问题的解决,欧拉在1736年将问题表成能否一笔画一个给定的图,并给出了一般性的解答.德国数学家高斯(Gauss,C.F.)于1827年得到曲面上曲率的积分与欧拉示性数的关系,他于1823年在电动力学中用线积分定义了空间中两条封闭曲线的环绕数.利斯廷(Listing,J.B.)于1848年第一次采用了拓扑学一词,而黎曼(Riemann,B.)于1851年定义了黎曼面,引进了连通性和亏格,实际上解决了可定向闭曲面的分类问题,给拓扑学的建立以巨大的推动.1858年,默比乌斯(Mo¨bius
5、,A.F.)和利斯廷独立地发现了单侧的曲面,现被更确切地称为不可定向曲面.默比乌斯于1863年恰当地指出形势几何学的定义.拓扑学正式成为一门独立的学科是庞加莱(Poincaré,H.)实现的.他于1892年发表了题为“论形势分析”的短文,然后于1895年发表了题为“形势分析”的120页的长文,介绍它的概念,其中有同调、贝蒂数、相交、基本群,甚至隐含着上同调;建立了对偶定理和欧拉-庞加莱公式.随后直到1904年,他连续发表了五篇补充,为改进前述长文中的缺点创立了剖分方法,定义了挠系数,开始探讨三维流形的拓扑分类,构造出基本群不平凡而一维贝蒂数平
6、凡的三维流形,并提出了著名的庞加莱猜想:基本群平凡的三维闭流形同胚于三维球面.这几篇文章奠定了组合拓扑学的基础,其思想非常丰富,观念很深刻,影响很深远,尽管不够严密或缺乏证明,但后来的进展正是从此入手,将这门学科建立在严格的逻辑上而发展为后来的组合拓扑学、代数拓扑学,进而发展出微分拓扑学等学科和分支.从此以后,拓扑学得到了蓬勃的发展,也为不同学科提供了宝贵的数学支持。拓扑学经典问题:七桥问题哥尼斯堡是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。一天有人提出:能不能每座桥都只走一遍,最后又回
7、到原来的位置。这个看起来很简单又很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。而大数学家欧拉了解了这个问题后,经过多次计算,也得不到正确答案,忽然他想到,七桥问题是不是原本就无解呢?在经过一年的研究之后,欧拉提交了《哥尼斯堡七桥》的论文,圆满解决了这一问题,同时开创了数学新一分支---图论。而这也是拓扑学产生的萌芽(1)在论文中,欧拉将七桥问题抽象出来,把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。并由此得到了如图一样的几何图形。若我们分别用A、B、C、D四个点表示为哥尼斯堡的四个区域。这样著名的“七桥问题”便转化
8、为是否能够用一笔不重复的画出过此七条线的问题了。若可以画出来,则图形中必有终点和起点,并且起点和终点应该是同一点,由于对称性可知由B或C为起点得到的效果是一样的,若
此文档下载收益归作者所有