欢迎来到天天文库
浏览记录
ID:27278761
大小:1.15 MB
页数:54页
时间:2018-12-01
《《微分方程建模 》ppt课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第四章微分方程建模在许多实际问题中,当直接导出变量之间的函数关系较为困难,但导出包含未知函数的导数或微分的关系式较为容易时,可用建立微分方程模型的方法来研究该问题,本节将通过一些最简单的实例来说明微分方程建模的一般方法。在连续变量问题的研究中,微分方程是十分常用的数学工具之一。§4.1微分方程的几个简单实例例1(理想单摆运动)建立理想单摆运动满足的微分方程,并得出理想单摆运动的周期公式。从图3-1中不难看出,小球所受的合力为mgsinθ,根据牛顿第二定律可得:从而得出两阶微分方程:(3.1)这是理想单摆应满足的运动方程(3.1)是
2、一个两阶非线性方程,不易求解。当θ很小时,sinθ≈θ,此时,可考察(3.1)的近似线性方程:(4.2)由此即可得出(3.2)的解为:θ(t)=θ0cosωt其中当时,θ(t)=0故有MQPmg图4-1(4.1)的近似方程例2一个半径为Rcm的半球形容器内开始时盛满了水,但由于其底部一个面积为Scm2的小孔在t=0时刻被打开,水被不断放出。问:容器中的水被放完总共需要多少时间?解:以容器的底部O点为原点,取坐标系如图3.3所示。令h(t)为t时刻容器中水的高度,现建立h(t)满足的微分方程。设水从小孔流出的速度为v(t),由力学定
3、律,在不计水的内部磨擦力和表面张力的假定下,有:因体积守衡,又可得:易见:故有:即:这是可分离变量的一阶微分方程,得RxySO图4-3hr为了保持自然资料的合理开发与利用,人类必须保持并控制生态平衡,甚至必须控制人类自身的增长。本节将建立几个简单的单种群增长模型,以简略分析一下这方面的问题。一般生态系统的分析可以通过一些简单模型的复合来研究,大家若有兴趣可以根据生态系统的特征自行建立相应的模型。美丽的大自然种群的数量本应取离散值,但由于种群数量一般较大,为建立微分方程模型,可将种群数量看作连续变量,甚至允许它为可微变量,由此引起的
4、误差将是十分微小的。离散化为连续,方便研究§4.2Malthus模型与Logistic模型模型1马尔萨斯(Malthus)模型马尔萨斯在分析人口出生与死亡情况的资料后发现,人口净增长率r基本上是一常数,(r=b-d,b为出生率,d为死亡率),既:或(4.5)(4.6)(4.1)的解为:其中N0=N(t0)为初始时刻t0时的种群数。马尔萨斯模型的一个显著特点:种群数量翻一番所需的时间是固定的。令种群数量翻一番所需的时间为T,则有:故模型检验比较历年的人口统计资料,可发现人口增长的实际情况与马尔萨斯模型的预报结果基本相符,例如,196
5、1年世界人口数为30.6(即3.06×109),人口增长率约为2%,人口数大约每35年增加一倍。检查1700年至1961的260年人口实际数量,发现两者几乎完全一致,且按马氏模型计算,人口数量每34.6年增加一倍,两者也几乎相同。模型预测假如人口数真能保持每34.6年增加一倍,那么人口数将以几何级数的方式增长。例如,到2510年,人口达2×1014个,即使海洋全部变成陆地,每人也只有9.3平方英尺的活动范围,而到2670年,人口达36×1015个,只好一个人站在另一人的肩上排成二层了。故马尔萨斯模型是不完善的。几何级数的增长Mal
6、thus模型实际上只有在群体总数不太大时才合理,到总数增大时,生物群体的各成员之间由于有限的生存空间,有限的自然资源及食物等原因,就可能发生生存竞争等现象。所以Malthus模型假设的人口净增长率不可能始终保持常数,它应当与人口数量有关。模型2Logistic模型人口净增长率应当与人口数量有关,即:r=r(N)从而有:(3.7)r(N)是未知函数,但根据实际背景,它无法用拟合方法来求。为了得出一个有实际意义的模型,我们不妨采用一下工程师原则。工程师们在建立实际问题的数学模型时,总是采用尽可能简单的方法。r(N)最简单的形式是常数,
7、此时得到的就是马尔萨斯模型。对马尔萨斯模型的最简单的改进就是引进一次项(竞争项)对马尔萨斯模型引入一次项(竞争项),令r(N)=r-aN此时得到微分方程:或(3.8)(4.8)被称为Logistic模型或生物总数增长的统计筹算律,是由荷兰数学生物学家弗赫斯特(Verhulst)首先提出的。一次项系数是负的,因为当种群数量很大时,会对自身增大产生抑制性,故一次项又被称为竞争项。(4.8)可改写成:(3.9)(4.9)式还有另一解释,由于空间和资源都是有限的,不可能供养无限增长的种群个体,当种群数量过多时,由于人均资源占有率的下降及环
8、境恶化、疾病增多等原因,出生率将降低而死亡率却会提高。设环境能供养的种群数量的上界为K(近似地将K看成常数),N表示当前的种群数量,K-N恰为环境还能供养的种群数量,(4.9)指出,种群增长率与两者的乘积成正比,正好符合统计规律,得到了实验结果的支
此文档下载收益归作者所有