高等数学 ch08第1讲

高等数学 ch08第1讲

ID:25182732

大小:1.12 MB

页数:37页

时间:2018-11-16

高等数学 ch08第1讲_第1页
高等数学 ch08第1讲_第2页
高等数学 ch08第1讲_第3页
高等数学 ch08第1讲_第4页
高等数学 ch08第1讲_第5页
资源描述:

《高等数学 ch08第1讲》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高等数学(下册)(1)邻域一、多元函数的概念(2)区域例如,即为开集.连通的开集称为区域或开区域.例如,例如,有界闭区域;无界开区域.(3)聚点内点一定是聚点;说明:边界点可能是聚点;例(0,0)既是边界点也是聚点.点集E的聚点可以属于E,也可以不属于E.例如,(0,0)是聚点但不属于集合.例如,边界上的点都是聚点也都属于集合.(4)n维空间n维空间的记号为说明:n维空间中两点间距离公式n维空间中邻域、区域等概念特殊地当时,便为数轴、平面、空间两点间的距离.内点、边界点、区域、聚点等概念也可定义.邻域:设两点为(5)二元函数的定义类似地可定义三元及三元以上函数.例1求的定义域.解所

2、求定义域为(6)二元函数的图形(如下页图)二元函数的图形通常是一张曲面.例如,图形如右图.例如,左图球面.单值分支:二、多元函数的极限说明:(1)定义中的方式是任意的;(2)二元函数的极限也叫二重极限(3)二元函数的极限运算法则与一元函数类似.例2求证证当时,原结论成立.例3求极限解其中例4证明不存在.证取其值随k的不同而变化,故极限不存在.确定极限不存在的方法:利用点函数的形式有三、多元函数的连续性例5讨论函数在(0,0)处的连续性.解取故函数在(0,0)处连续.当时例6讨论函数在(0,0)的连续性.解取其值随k的不同而变化,极限不存在.故函数在(0,0)处不连续.闭区域上连续函数的性质在有

3、界闭区域D上的多元连续函数,在D上至少取得它的最大值和最小值各一次.在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两值之间的任何值至少一次.(1)最大值和最小值定理(2)介值定理多元初等函数:由多元多项式及基本初等函数经过有限次的四则运算和复合步骤所构成的可用一个式子所表示的多元函数叫多元初等函数一切多元初等函数在其定义区域内是连续的.定义区域是指包含在定义域内的区域或闭区域.例7解多元函数极限的概念多元函数连续的概念闭区域上连续函数的性质(注意趋近方式的任意性)四、小结多元函数的定义思考题思考题解答不能.例取但是不存在.原因为若取练习题

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。