matlab非线性参数拟合估计很好的参考材料

matlab非线性参数拟合估计很好的参考材料

ID:23183892

大小:68.82 KB

页数:6页

时间:2018-11-05

matlab非线性参数拟合估计很好的参考材料_第1页
matlab非线性参数拟合估计很好的参考材料_第2页
matlab非线性参数拟合估计很好的参考材料_第3页
matlab非线性参数拟合估计很好的参考材料_第4页
matlab非线性参数拟合估计很好的参考材料_第5页
资源描述:

《matlab非线性参数拟合估计很好的参考材料》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、使用nlinfit、fminsearch在matlab中实现基于最小二乘法的非线性参数拟合(整理自网上资源)最小二乘法在曲线拟合中比较普遍。拟合的模型主要有1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型......一般对于LS问题,通常利用反斜杠运算“”、fminsearch或优化工具箱提供的极小化函数求解。在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。“”命令1.假设要拟合的多项式是:y=a+b*x+c*x^2.首先建立设计矩阵X:X=

2、[ones(size(x))xx^2];执行:para=Xypara中包含了三个参数:para(1)=a;para(2)=b;para(3)=c;这种方法对于系数是线性的模型也适应。2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2)设计矩阵X为X=[ones(size(x))exp(x)x.*exp(x.^2)];para=Xy3.多重回归(乘积回归)设要拟合:y=a+b*x+c*t,其中x和t是预测变量,y是响应变量。设计矩阵为X=[ones(size(x))xt]%注意x,t大小相等!para=Xypolyfit函数polyfit函数

3、不需要输入设计矩阵,在参数估计中,polyfit会根据输入的数据生成设计矩阵。1.假设要拟合的多项式是:y=a+b*x+c*x^2p=polyfit(x,y,2)然后可以使用polyval在t处预测:y_hat=polyval(p,t)polyfit函数可以给出置信区间。[pS]=polyfit(x,y,2)%S中包含了标准差[y_fit,delta]=polyval(p,t,S)%按照拟合模型在t处预测在每个t处的95%CI为:(y_fit-1.96*delta,y_fit+1.96*delta)2.指数模型也适应假设要拟合:y=a+b*exp(x)+c*

4、exp(x.?2)p=polyfit(x,log(y),2)fminsearch函数fminsearch是优化工具箱的极小化函数。LS问题的基本思想就是残差的平方和(一种范数,由此,LS产生了许多应用)最小,因此可以利用fminsearch函数进行曲线拟合。假设要拟合:y=a+b*exp(x)+c*exp(x.?2)首先建立函数,可以通过m文件或函数句柄建立:x=[......]';y=[......]';f=@(p,x)p(1)+p(2)*exp(x)+p(3)*exp(x.?2)%注意向量化:p(1)=a;p(2)=b;p(3)=c;%可以根据需要选择是

5、否优化参数%opt=options()p0=ones(3,1);%初值para=fminsearch(@(p)(y-f(p,x)).^2,p0)%可以输出Hessian矩阵res=y-f(para,x)%拟合残差曲线拟合工具箱提供了很多拟合函数,对大样本场合比较有效!非线性拟合nlinfit函数clearall;x1=[0.42920.42690.3810.40150.41170.3017]';x2=[0.000140.000590.01260.00610.004250.0443]';x=[x1x2];y=[0.5170.5090.440.4660.4790

6、.309]';f=@(p,x)2.350176*p(1)*(1-1/p(2))*(1-(1-x(:,1).^(1/p(2))).^p(2)).^2.*(x(:,1).^(-1/p(2))-1).^(-p(2)).*x(:,1).^(-1/p(2)-0.5).*x(:,2);p0=[80.5]';opt=optimset('TolFun',1e-3,'TolX',1e-3);%[pR]=nlinfit(x,y,f,p0,opt)2.多项式型的一个例子1900-2000年的总人口情况的曲线拟合clearall;closeall;%cftool提供了可视化的曲线拟

7、合!t=[19001910192019301940195019601970198019902000]';y=[75.99591.972105.711123.203131.669150.697179.323203.212226.505249.633281.4220]';%t太大,以t的幂作为基函数会导致设计矩阵尺度太差,列变量几乎线性相依。变换为[-11]上s=(t-1950)/50;%plot(s,y,'ro');%回归线:y=a+bxmx=mean(s);my=mean(y);sx=std(s);sy=std(y);r=corr(s,y);b=r*sy/s

8、x;a=my-b*mx;rline=a+b.*s;f

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。