-直线与圆方程应用

-直线与圆方程应用

ID:22664092

大小:166.00 KB

页数:5页

时间:2018-10-30

-直线与圆方程应用_第1页
-直线与圆方程应用_第2页
-直线与圆方程应用_第3页
-直线与圆方程应用_第4页
-直线与圆方程应用_第5页
资源描述:

《-直线与圆方程应用》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、4、2、3直线与圆的方程的应用(二)【教学目标】1、坐标法求直线和圆的应用性问题;2、面积最小圆、中点弦问题的解决方法.【教学重难点】教学重点:坐标法求直线和圆的应用性问题.教学难点:面积最小圆、中点弦问题的解决方法.【教学过程】1、面积最小圆问题、中点弦轨迹问题例1、求通过直线与圆的交点,且面积最小的圆的方程.结论:解法一:利用过两曲线交点的曲线系.我们可以设圆的方程为.配方得到标准式方程如下所示,可以得到,当时,此时半径,所求圆的方程为.解法二:利用平面几何知识.以直线与圆的交点连线为直径的圆符合条件.把两个方程式联立,消去,得.因为判别式大于零,我们可以根据根与系数的关系也即

2、韦达定理得到线段的中点的横坐标为,,又半径(弦长公式),所以所求的圆的方程是:.解法三:我们可以求出两点的坐标,根据两点间距离公式和中点坐标公式求出半径和圆心,求出圆的方程.变式练习:求圆上的点到的最远、最近的距离。例2、已知圆O的方程为,求过点所作的弦的中点的轨迹.结论:解法一:参数法(常规方法)设过A所在的直线方程为y-2=k(x-1)(k存在时),P(x,y),则,消去y,得到如下方程所以我们可以得到下面结果,利用中点坐标公式及中点在直线上,得:(k为参数).消去k得P点的轨迹方程为,当k不存在时,中点P(1,0)的坐标也适合方程.所以P点的轨迹是以点(1/2,1)为圆心,为

3、半径的圆.解法二:代点法(涉及中点问题可考虑此法)我们可以设过点A的弦为MN,则可以设两点的坐标为.因为M、N都在圆上,所以我们可以得到,然后我们把两式向减可以得到:设P(x,y)则.所以由这个结论和M、N、P、A四点共线,可以得到.所以2x+[(y-2)/(x-1)]2y=0,所以P点的轨迹方程为5(x=1时也成立),所以P点的轨迹是以点(1/2,1)为圆心,为半径的圆.解法三:数形结合(利用平面几何知识),由垂径定理可知,故点P的轨迹是以AO为直径的圆.变式练习:已知直线,是上一动点,过作轴、轴的垂线,垂足分别为、,则在、连线上,且满足的点的轨迹方程。反思总结:当堂检测:已知与

4、曲线C:相切的直线交的正半轴与两点,O为原点,=a,,.(1)求线段中点的轨迹方程;(2)求的最小值.【板书设计】例1变式1例2变式2【作业布置】1、必做题:习题4.2B组的2、3、题;4、2、3直线与圆的方程的应用导学案(二)课前预习学案一、预习目标:利用直线与圆的位置关系及圆与圆的位置关系解决一些实际问题二、预习内容:1.你能说出直线与圆的位置关系吗?2.解决直线与圆的位置关系,你将采用什么方法?三、提出疑惑1、;2、;3、。课内探究学案一、学习目标:(1)理解直线与圆的位置关系的几何性质;5(2)利用平面直角坐标系解决直线与圆的位置关系;(3)会用“数形结合”的数学思想解决问

5、题.学习重难点:直线的知识以及圆的知识二、学习过程:1、面积最小圆问题、中点弦轨迹问题例1、求通过直线与圆的交点,且面积最小的圆的方程.变式练习:求圆上的点到的最远、最近的距离。例2、已知圆O的方程为,求过点所作的弦的中点的轨迹.5变式练习:已知直线,是上一动点,过作轴、轴的垂线,垂足分别为、,则在、连线上,且满足的点的轨迹方程。反思总结:当堂检测:已知与曲线C:相切的直线交的正半轴与两点,O为原点,=a,,.(1)求线段中点的轨迹方程;(2)求的最小值.课后练习与提高1、M(为圆内异于圆心的一点,则直线与该圆的位置关系为A、相切B、相交C、相离D、相切或相交2.从直线:上的点向圆

6、引切线,则切线长的最小值为A、B、C、D、3、已知分别是直线上和直线外的点,若直线的方程是5,则方程表示A、与重合的直线B、过P2且与平行的直线C、过P1且与垂直的直线D、不过P2但与平行的直线4.如果实数.5、已知集合A={(x,y)|=2,x、y∈R},B={(x,y)|4x+ay=16,x、y∈R},若A∩B=,则实数a的值为.6.等腰三角形ABC的顶点,求另一端点C的轨迹方程.5

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。