复数的运算法则

ID:21988638

大小:433.00 KB

页数:12页

时间:2018-10-21

复数的运算法则_第1页
复数的运算法则_第2页
复数的运算法则_第3页
复数的运算法则_第4页
复数的运算法则_第5页
资源描述:

《复数的运算法则》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、复数的运算法则复数加减运算的几何意义问题引入例1例21.复数加、减法的运算法则:已知两复数z1=a+bi,z2=c+di(a,b,c,d是实数)即:两个复数相加(减)就是实部与实部,虚部与虚部分别相加(减).(1)加法法则:z1+z2=(a+c)+(b+d)i;(2)减法法则:z1-z2=(a-c)+(b-d)i.(a+bi)±(c+di)=(a±c)+(b±d)i例1、计算(1-3i)+(2+5i)+(-4+9i)2.复数的乘法法则:(2)复数的乘法与多项式的乘法是类似的,只是在运算过程中把换成-1,然后实、虚部分别合并.说明:(1)两个

2、复数的积仍然是一个复数;(3)易知复数的乘法满足交换律、结合律以及分配律即对于任何z1,z2,z3∈C,有例2例2.计算(-2-i)(3-2i)(-1+3i)复数的乘法与多项式的乘法是类似的.我们知道多项式的乘法用乘法公式可迅速展开,运算,类似地,复数的乘法也可大胆运用乘法公式来展开运算.注意a+bi与a-bi两复数的特点.思考:设z=a+bi(a,b∈R),那么定义:实部相等,虚部互为相反数的两个复数叫做互为共轭复数.复数z=a+bi的共轭复数记作另外不难证明:一步到位!例3.计算(a+bi)(a-bi)类似地我们知道,两个向量的和满足平

3、行四边形法则,复数可以表示平面上的向量,那么复数的加法与向量的加法是否具有一致性呢?设z1=a+biz2=c+di,则z1+z2=(a+c)+(b+d)ixOyZ1(a,b)ZZ2(c,d)吻合!这就是复数加法的几何意义.类似地,复数减法:Z1(a,b)Z2(c,d)OyxZOZ1-OZ2这就是复数减法的几何意义.练习1.计算:(1)i+2i2+3i3+…+2004i2004;解:原式=(i-2-3i+4)+(5i-6-7i+8)+…+(2001i-2002-2003i+2004)=501(2-2i)=1002-1002i.2.已知方程x2

4、-2x+2=0有两虚根为x1,x2,求x14+x24的值.解:注:在复数范围内方程的根与系数的关系仍适用.3.已知复数是的共轭复数,求x的值.解:因为的共轭复数是,根据复数相等的定义,可得解得所以.7.在复数集C内,你能将分解因式吗?1.计算:(1+2i)22.计算(i-2)(1-2i)(3+4i)-20+15i-2+2i-3-i8(x+yi)(x-yi)例1设,求证:(1);(2)证明:(1)(2)(2)D

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《复数的运算法则》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、复数的运算法则复数加减运算的几何意义问题引入例1例21.复数加、减法的运算法则:已知两复数z1=a+bi,z2=c+di(a,b,c,d是实数)即:两个复数相加(减)就是实部与实部,虚部与虚部分别相加(减).(1)加法法则:z1+z2=(a+c)+(b+d)i;(2)减法法则:z1-z2=(a-c)+(b-d)i.(a+bi)±(c+di)=(a±c)+(b±d)i例1、计算(1-3i)+(2+5i)+(-4+9i)2.复数的乘法法则:(2)复数的乘法与多项式的乘法是类似的,只是在运算过程中把换成-1,然后实、虚部分别合并.说明:(1)两个

2、复数的积仍然是一个复数;(3)易知复数的乘法满足交换律、结合律以及分配律即对于任何z1,z2,z3∈C,有例2例2.计算(-2-i)(3-2i)(-1+3i)复数的乘法与多项式的乘法是类似的.我们知道多项式的乘法用乘法公式可迅速展开,运算,类似地,复数的乘法也可大胆运用乘法公式来展开运算.注意a+bi与a-bi两复数的特点.思考:设z=a+bi(a,b∈R),那么定义:实部相等,虚部互为相反数的两个复数叫做互为共轭复数.复数z=a+bi的共轭复数记作另外不难证明:一步到位!例3.计算(a+bi)(a-bi)类似地我们知道,两个向量的和满足平

3、行四边形法则,复数可以表示平面上的向量,那么复数的加法与向量的加法是否具有一致性呢?设z1=a+biz2=c+di,则z1+z2=(a+c)+(b+d)ixOyZ1(a,b)ZZ2(c,d)吻合!这就是复数加法的几何意义.类似地,复数减法:Z1(a,b)Z2(c,d)OyxZOZ1-OZ2这就是复数减法的几何意义.练习1.计算:(1)i+2i2+3i3+…+2004i2004;解:原式=(i-2-3i+4)+(5i-6-7i+8)+…+(2001i-2002-2003i+2004)=501(2-2i)=1002-1002i.2.已知方程x2

4、-2x+2=0有两虚根为x1,x2,求x14+x24的值.解:注:在复数范围内方程的根与系数的关系仍适用.3.已知复数是的共轭复数,求x的值.解:因为的共轭复数是,根据复数相等的定义,可得解得所以.7.在复数集C内,你能将分解因式吗?1.计算:(1+2i)22.计算(i-2)(1-2i)(3+4i)-20+15i-2+2i-3-i8(x+yi)(x-yi)例1设,求证:(1);(2)证明:(1)(2)(2)D

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭