系统响应及系统稳定性

系统响应及系统稳定性

ID:21345174

大小:171.30 KB

页数:9页

时间:2018-10-21

系统响应及系统稳定性_第1页
系统响应及系统稳定性_第2页
系统响应及系统稳定性_第3页
系统响应及系统稳定性_第4页
系统响应及系统稳定性_第5页
资源描述:

《系统响应及系统稳定性》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、实验一及课堂作业实验一:系统响应及系统稳定性一、实验原理与方法1、在时域求系统响应的方法有两种:第一种是通过解差分方程求得系统输出;第二种是已知系统的单位脉冲响应,通过求输入信号和系统单位脉冲响应的线性卷积求得系统输出。2、检验系统的稳定性,其方法是在输入端加入单位阶跃序列,观察输出波形,如果波形稳定在一个常数值(包括零)上,系统稳定,否则不稳定。3、系统的频域特性包括传输函数/特性(系统单位脉冲响应的傅里叶变换——幅频、相频)、系统函数/特性(系统单位脉冲响应的Z变换)、零极点分布等。分析系统的频域特性是为

2、了知晓系统对不同频率的输入信号所产生的响应结果,因为零、极点分布对系统的频域特性有影响,通过控制系统函数的零、极点分布就可以设计出不同特性需求的系统。二、实验内容1、编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter函数或conv函数求解系统输出响应的主程序。程序中要有绘制信号波形的功能。2、给定一个低通滤波器的差分方程为输入信号(1)分别求出和)的系统响应,并画出其波形。(2)求出系统的单位脉冲响应,画出其波形。程序见附录1.1、实验结果见图1.1。3、给定系统的单位脉冲响应为 用线性卷积

3、法求)分别对系统和)的输出响应并画出波形。程序见附录1.2、实验结果见图1.2。4、给定一谐振器的差分方程为 令,谐振器的谐振频率为。 (1)用实验方法检查系统是否稳定,输入信号为时,画出系统输出波形。(2)给定输入信号为 求出系统的输出响应,并画出其波形。程序见附录1.3、实验结果见图1.3。三、实验结果和分析、讨论及结论1、实验结果:图1.1依据差分方程求取系统脉冲响应和输出响应实验分析、讨论及结论:(a)中25个点数和程序所写一致。Filter函数实现线性常系数差分方程的递推求解,调用格式如下:Y=[f

4、ilter(B,A,x)]***计算系统对输入信号x的零状态响应输出信号向量Y,B、A是差分方程的系数向量。即B=[a1,a2……am]A=[b1,b2……bn]2、实验结果:图1.2线性卷积求取二个不同系统输出响应实验分析、讨论及结论:(d)(f)单位脉冲响应点数与程序要求一致;(e)(g)卷积点数满足M+N-1的要求,图形也满足要求。Conv函数用于计算两个有限长序列的卷积;C=conv(A,B)计算两个有限长序列向量A和B的卷积3、实验结果:图1.3依据差分方程求取系统脉冲响应和输出响应实验分析、讨论及

5、结论:在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的,(h)中的输出显然趋近于零,所以系统是稳定的。在(i)中,谐振器具有对某个频率进行谐振的性质,本实验中的谐振器的谐振频率是0.4rad,因此稳定波形为sin(0.4n)。四、思考题1、如果输入信号为无限长序列,系统的单位脉冲响应是有限长序列,可否用线性卷积法求系统的响应?如何求?答:如果输入信号为无限长序列,系统的单位脉冲响应是有限长序列,可用分段线性卷积法求系统的响应。具体步骤是对输入信号序列分段;求单位脉冲

6、响应h(n)与各段的卷积;将各段卷积结果相加。具体实现方法有第三章P91介绍的重叠相加法和重叠保留法。2、如果信号经过低通滤波器,把信号的高频分量滤掉,时域信号会有何变化,用前面第一个实验结果进行分析说明。答:如果信号经过低通滤波器,则信号的高频分量将被过滤掉,时域信号的剧烈变化变的平滑,在有阶跃处附近产生过渡带。由实验内容1的结果图可见,经过系统低通滤波使得输入信号和的阶跃变化变的缓慢上升与下降。四、总结与心得体会实验总结即在实验原理中说明的两点:1、在时域求系统响应的方法有两种:第一种是通过解差分方程求得

7、系统输出;第二种是已知系统的单位脉冲响应,通过求输入信号和系统单位脉冲响应的线性卷积求得系统输出。2、检验系统的稳定性,其方法是在输入端加入单位阶跃序列,观察输出波形,如果波形稳定在一个常数值(包括零)上,系统稳定,否则不稳定。实验的心得体会见下:在此次试验中,通过课堂所留的三个例子,温习了关于MATLAB软件的操作及应用,基本使用方法和它的运行环境。又进一步地通过实验加深了对MATLAB软件的了解,体会到了MATLAB具有完备的图形处理功能,实现计算结果和编程的可视化等功能。通过做实验的过程以及实验分析的结

8、果,了解并学会了filter函数和conv函数的基本用法,前者可计算知道输入信号的前提下求解输出响应的序列,后者则可以通过输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。当然,在实验过程中,也遇到了一些问题,比如课堂作业的第三个问题里面,由于程序里面缺少“;”,导致少了一个结果图,通过检查并修改程序,解决了问题。总得来说,实验还是比较圆满的。通过这次的实验。极大地提升了自己对于程序编辑的熟练

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。