资源描述:
《实际问题与二次函数(3)拱桥问题.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、26.3实际问题与二次函数(3)具有二次函数的图象抛物线的特征如图是某公园一圆形喷水池,水流在各方向沿形状相同的抛物线落下,如果喷头所在处A距地面1.25米,水流路线最高处B距地面2.25米,且距水池中心的水平距离为1米.试建立适当的坐标系,表示该抛物线的解析式为,如果不考虑其他因素,那么水池的半径至少要米,才能使喷出的水流不致落到池外。.y=-(x-1)2+2.252.5探究1:B.A.CxOA(0,1.25)B(1,2.25)y1.2512.25如图的抛物线形拱桥,当水面在时,拱桥顶离水面2m,水面宽4m,水面下降1m,水面宽度增加多少?探究2:抛物线形拱桥,当水面在时,拱顶离水
2、面2m,水面宽度4m,水面下降1m,水面宽度增加多少?xy0(2,-2)●(-2,-2)●当时,所以,水面下降1m,水面的宽度为m.∴水面的宽度增加了m探究2:解:设这条抛物线表示的二次函数为由抛物线经过点(2,-2),可得所以,这条抛物线的二次函数为:当水面下降1m时,水面的纵坐标为抛物线形拱桥,当水面在时,拱顶离水面2m,水面宽度4m,水面下降1m,水面宽度增加多少?xy0(4,0)●(0,0)●∴水面的宽度增加了m(2,2)解:设这条抛物线表示的二次函数为由抛物线经过点(0,0),可得所以,这条抛物线的二次函数为:当时,所以,水面下降1m,水面的宽度为m.当水面下降1m时,水面
3、的纵坐标为Xyxy00注意:在解决实际问题时,我们应建立简单方便的平面直角坐标系.用抛物线的知识解决生活中的一些实际问题的一般步骤:建立直角坐标系二次函数问题求解找出实际问题的答案及时总注意变量的取值范围有座抛物线形拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m,为了保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。练习:例3:你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地视为抛物线,如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4米,距地面均为1米,学生丙、丁分别站在距甲拿绳的手水平距离1米、2.5米
4、处,绳甩到最高处时,刚好通过他们的头顶,已知学生丙的身高是1.5米,请你算一算学生丁的身高。1m2.5m4m1m甲乙丙丁oABCD解:由题意,设抛物线解析式为y=ax2+bx+1,把B(1,1.5),D(4,1)代入得:丁xyo把x=2.5代入得y=1.625∴C点的坐标为(2.5,1.625)∴丁的身高是1.625米1m2.5m4m1m甲乙丙(0,1)(4,1)(1,1.5)ABCD探究3:投篮问题一场篮球赛中,小明跳起投篮,已知球出手时离地面高米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。问此球能否投中
5、?3米8米4米4米08(4,4)(0≤x≤8)(0≤x≤8)∵篮圈中心距离地面3米∴此球不能投中如图,建立平面直角坐标系,点(4,4)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数为:3若假设出手的角度和力度都不变,则如何才能使此球命中?(1)跳得高一点(2)向前平移一点探究延伸:yx(4,4)(8,3)在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球投入篮圈?0123456789在出手角度、力度及高度都不变的情况下,则小明朝着篮球架再向前平移多少米后跳起投篮也能将篮球投入篮圈?yX(8,3)(5,4)(4,4)0123456789(7,3)●解二次函数应用题的一
6、般步骤:1.审题,弄清已知和未知。2.将实际问题转化为数学问题。建立适当的平面直角坐标系(初中阶段不要求)小结反思3.根据题意找出点的坐标,求出抛物线解析式。分析图象(并注意变量的取值范围),解决实际问题。4.返回实际背景检验。如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线可以用表示.(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?(1)卡车可以通过.提示:当x=±1时,y=3.75,3.75+2>4.(2)卡车可以通过.提示:当x=±2时,y=3,3+2>4.-1-3-1-31313O