欢迎来到天天文库
浏览记录
ID:20525612
大小:3.02 MB
页数:11页
时间:2018-10-13
《徐州市铜山区2015-2016学年级八年级下数学期中试题含答案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、2015~2016学年度第二学期期中考试八年级数学试题参考答案及评分意见2016.4.12说明:1.本意见对每题给出了一种或几种解法供参考,如果考生的解法与本意见不同,可根据试题的主要考查内容比照本意见制定相应的评分细则.2.对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端括号内所注分数,表示考生正确做到这一步应得的分段分数.4.只给整数分数.一、选择题(每题3分,共24分)题号12345678答案CBD
2、DCCBB二、填空题(每题3分,共30分)9.①③10.167.5---170.511.12.④③②①13.514.1615.1216.③17.518.2三、解答题(第19-25题每题8分,第26题每题10分,共66分)19.(本题8分)(1)解:原式=(2)解:原式==---------4分==--------8分20.(本题8分)(1)解:去分母得:2x=3(x-2)(2)解:去分母得:去括号得:2x=3x-6去括号得:-4x+4-(+4x+4)=16移项得:2x-3x=-6移项合并得:-8x=16合并同类项得:x=6系数化为1得:x=-2检验:当x=6时,x(x-
3、2)=24≠0,检验:当x=-2时,(x+2)(x-2)=0,x=-2是增根x=6是原方程的解.---------------4分原方程无解.----------------------8分21.(本题8分)证明:连接BD,BD交AC于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD(平行四边形的对角线互相平分).------------3分∵AE=CF,∴OA-AE=OC-CF,即OE=OF.------------6分∴四边形EBFD是平行四边形。---------8分(对角线互相平分的四边形是平行四边形).22.(本题8分)解:(1)△AB1C1如图所
4、示;---------2分(2)如图所示,A(0,1),C(﹣3,1);---------5分(3)△A2B2C2如图所示,B2(3,﹣5),C2(3,﹣1).---------8分(后两问,图1分,每个坐标1分)23.(本题8分)解:(1)35------------2分(2)补全条形统计图如图所示:---------5分(3)30×=22.5(万人).即估计该市初中学生每天进行体育锻炼时间在1小时以上的人数是22.5万人------------8分24.解:设第二批鲜花每盒的进价是x元,依题意有,------------4分解得x=150,------------6
5、分经检验:x=150是原方程的解.------------7分故第二批鲜花每盒的进价是150元.------------8分25.(1)证明:∵四边形ABCD中E、F、G、H分别是AD、BC、BD、AC的中点∴FG=CDHE=CDFH=ABGE=AB.∵AB=CD∴FG=FH=HE=EG.∴四边形EGFH是菱形.------------4分(2)解:∵四边形ABCD中E、F、G、H分别是AD、BC、BD、AC的中点∴GF∥DC,HF∥AB.∴∠GFB=∠DCB∠HFC=∠ABC.∴∠HFC+∠GFB=∠ABC+∠DCB=90°.∴∠GFH=90°.∴菱形EGFH是正方形
6、.∵AB=1∴EG=AB=∴四边形EFGH的面积=EG²=﹙﹚²=------------8分26.(1)证明:延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.---------3分(2)AM=DE+BM成立.过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB
7、=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.---------6分(3)①结论AM=AD+MC仍然成立.---------8分②结论AM=DE+BM不成立.---------10分
此文档下载收益归作者所有