卡诺图化简法

卡诺图化简法

ID:20453596

大小:2.00 MB

页数:55页

时间:2018-10-12

卡诺图化简法_第1页
卡诺图化简法_第2页
卡诺图化简法_第3页
卡诺图化简法_第4页
卡诺图化简法_第5页
资源描述:

《卡诺图化简法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、五.逻辑函数的卡诺图化简法关于“最小项”第6章返回(1)最小项定义如果一个函数的某个乘积项包含了函数的全部变量,其中每个变量都以原变量或反变量的形式出现,且仅出现一次,则这个乘积项称为该函数的一个标准积项,通常称为最小项。3个变量A、B、C可组成8个最小项:(2)最小项的表示方法通常用符号mi来表示最小项。下标i的确定:把最小项中的原变量记为1,反变量记为0,当变量顺序确定后,可以按顺序排列成一个二进制数,则与这个二进制数相对应的十进制数,就是这个最小项的下标i。3个变量A、B、C的8个最小项可以分别表示为:第6章(3

2、)最小项的性质性质1:任意一个最小项,只有一组变量取值使其值为1,而在变量取其他各组值时这个最小项的值都是0。第6章(3)最小项的性质性质2:不同的最小项,使它的值为1的那一组变量取值也不同。第6章(3)最小项的性质性质3:任意两个不同的最小项的乘积必为0。第6章ABCABC(3)最小项的性质性质4:全部最小项的和必为1。第6章变量ABC取值为001情况下,各最小项之和为1。【因为其中只有一个最小项为1,其余全为0。】任何一个逻辑函数都可以表示成唯一的一组最小项之和,称为标准与或表达式,也称为最小项表达式。对于不是最小

3、项表达式的与或表达式,可利用公式A+A=1和A(B+C)=AB+BC来配项展开成最小项表达式。第6章(4)逻辑函数的最小项表达式例如:【表示法1】【表示法2】【表示法3】【表示法4】【表示法5】最小项的若干表示方法第6章第6章例:将下列函数化为最小项之和的形式添项第6章如果列出了函数的真值表,则只要将函数值为1的那些最小项相加,便是函数的最小项表达式。已知真值表,写出函数的最小项之和的形式将真值表中函数值为0的那些最小项相加,便可得到反函数的最小项表达式。第6章则由真值表可得如下逻辑表达式:注意:在n个变量的逻辑系统中

4、,如果Y为i个最小项之和,则必为余下的(n-i)个最小项之和。(5)最小项的相邻性任何两个最小项如果他们只有一个因子不同,其余因子都相同,则称这两个最小项为相邻最小项。显然,m0与m1具有相邻性,而与不相邻,因为他们有两个因子不相同。m3与m4也不相邻,而m3与m2相邻。第6章相邻的两个最小项之和可以合并成一项,并消去一个变量。如:对于有n个变量的逻辑函数,其最小项有2n个。因此该逻辑函数的卡诺图由2n个小方格构成,每个小方格都满足逻辑相邻项的要求。分别画出了二、三、四个变量的卡诺图。2.卡诺图◆基本知识卡诺图是由美国

5、工程师卡诺(Karnaugh)首先提出的一种用来描述逻辑函数的特殊方格图。在这个方格图中,每一个方格代表逻辑函数的一个最小项,而且几何相邻(在几何位置上,上下或左右相邻)的小方格具有逻辑相邻性,即两相邻小方格所代表的最小项只有一个变量取值不同。图三变量卡诺图图四变量卡诺图补充画卡诺图。例8画出逻辑函数的卡诺图。解:◆卡诺图相邻性的特点保证了几何相邻两方格所代表的最小项只有一个变量不同。因此,若相邻的方格都为1(简称1格)时,则对应的最小项就可以合并。合并的结果是消去这个不同的变量,只保留相同的变量。这是图形化简法的依据

6、。3.逻辑函数的卡诺图化简法利用卡诺图化简逻辑函数的方法称为逻辑函数的卡诺图化简法。综合上述概念,卡诺图具有下述性质:性质1:卡诺图中两个相邻1格的最小项可以合并成一个与项,并消去一个变量。例:右图为两个1格合并时消去一个变量的例子。图中,m1和m5为两个相邻1格,则有:再如:性质2:卡诺图中四个相邻1格的最小项,可以合并成一个与项,并消去两个变量。例:再如:性质3:卡诺图中八个相邻1格的最小项可以合并成一个与项,并消去三个变量。综上所述,在n个变量卡诺图中,若有2k个1格相邻(k为0,1,2…,n),它们可以圈在一起

7、加以合并,合并时可消去k个不同的变量,简化为一个具有(n-k)个变量的与项。若k=n,则合并时可消去全部变量,结果为1。◆用卡诺图化简法求最简与或表达式的步骤是:(1)画出函数的卡诺图;(2)合并最小项;(3)写出最简与或表达式。2合并最小项。把图中所有的1格都圈起来,相邻且能够合并在一起的1格圈在一个大圈中;例用卡诺图化简法求逻辑函数的最简与或表达式解:1画出函数F的卡诺图。对于在函数F的标准与或表达式中出现的那些最小项,在其卡诺图的对应小方格中填上1,其余方格不填;3写出最简与或表达式。对卡诺图中所画每一个圈进行合

8、并,保留相同的变量,去掉互反的变量。11111F=(m1+m3)+(m2+m3+m6+m7)例10用卡诺图化简函数解:根据最小项的编号规则,得将这四个最小项填入四变量卡诺图内化简得例11用卡诺图化简函数解:从表达式中可以看出此为四变量的逻辑函数,但是有的乘积项中缺少一个变量,不符合最小项的规定。因此,每个乘积项中都要将缺少的变量补

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。