欢迎来到天天文库
浏览记录
ID:1617166
大小:142.50 KB
页数:3页
时间:2017-11-12
《导数复习讲课导学案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、高二数学导数复习导学案我们学习要三心二意:信心、恒心、决心;创意、乐意。制作人:张遵银2012.10.29题目:导数(复习课)高考读一读导数,大题一道。大题不大,一碰就炸;难题不难,有我帮忙。分类讨论,少不了;数形结合,缺不得,基础牢,细心算,胜利在我手中攥。一、【目标展示】1、理解导数的概念和几何意义。2、记住常见函数的求导。3、记住函数的运算法则。4、掌握导数的极值,最值,单调性的应用。二、【预备知识】◆◆◆◆◆课前一定要完成呀!◆◆◆◆◆【基础知识再现】1、导数的概念:2、导数的几何意义:3、常见函数的导数:(1)C′=(2)(xn)′=(3)(sinx
2、)′=(4)(cosx)′=(5)(lnx)′=(6)(logax)′=(7)(ex)′=(8)(ax)′=4、写出函数求导运算法则:(=5、求函数的单调增区间并由此归纳出函数的单调性的求法:6、怎么求函数的极值并判断是极大值还是极小值7、函数在区间上的最大值是()(A)-2(B)0(C)2(D)4由此题的解法你能说说怎样求在某区间上函数的最值吗?三、【课前小练】◆◆◆◆◆课前一定要完成呀!◆◆◆◆◆1、求函数的导数:2、曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.四、【合作探究】◆◆◆◆◆独立考虑5分钟,组内讨论5分钟◆◆◆◆【合作探究一】
3、1、函数有极值吗?若有是极大还是极小值为多少?理由:______________________________________________________2、函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点()A.1个B.2个C.3个D.4个谈谈你的看法:_______________________________细节决定成败细心赢得未来高二数学导数复习导学案我们学习要三心二意:信心、恒心、决心;创意、乐意。制作人:张遵银2012.10.29【合作探究二】1、函数的一个单调递增区间是()A.B.C.D.谈谈你的想法:_____
4、___________________________________2、已知函数讨论的单调性谈谈你的想法:______________________________________温馨提示:极值不一定是最值,最值、极值都是指的原函数的值,切点在原函数图像上,又在切线上。五、【精讲点拨】:◆◆◆◆◆实战展示◆◆◆◆◆直击高考例题:(重庆)已知函数(x>0)在x=1处取得极值,其中a,b,c为常数。(1)试确定a,b的值;(2)讨论函数f(x)的单调区间;(3)若对任意x>0,不等式恒成立,求c的取值范围。六、【当堂检测】◆◆◆◆◆看看你掌握了吗?◆◆◆◆◆1
5、、求下列函数导数2、(全国一4)曲线在点处的切线的倾斜角为()A.30°B.45°C.60°D.120°3、全国二)已知曲线的一条切线的斜率为,则切点的横坐标为()A.1B.2C.3D.44、函数在下面哪个区间内是增函数().5、求曲线在点(1,1)处的切线方程.6、已知函数若在区间是增函数,求实数的取值范围。七、【课后作业】◆◆◆◆◆课后十分钟练习◆◆◆◆◆1.设(1)若的极值点,求a的值;(2)若函数处取得最大值,求a的取值范围.八、反思、方法总结:__________________________________________________细节决定
6、成败细心赢得未来高二数学导数复习导学案我们学习要三心二意:信心、恒心、决心;创意、乐意。制作人:张遵银2012.10.29细节决定成败细心赢得未来
此文档下载收益归作者所有