欢迎来到天天文库
浏览记录
ID:16120836
大小:1019.00 KB
页数:18页
时间:2018-08-08
《2018年黑龙江省哈尔滨师范大学附属中学高三第三次模拟考试数学(文)试题(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、哈师大附中2018年高三第三次模拟考试文科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合则=()A.B.C.D.【答案】C【解析】分析:利用一元二次不等式的解法化简集合,找到两集合的公共元素即可.详解:或,,故选C.点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A又属于集合B的元素的集合.2.已知为虚数单位,=()A.B.C.D.【答案】A【解析】分析:先利用复数模的定义求出,从而利用可得结果.详解:根据复
2、数模的定义可得,故选A.点睛:本题主要考查复数模的定义以及复数的简单运算,属于简单题.3.已知等差数列,则数列的公差()A.0B.1C.-1D.2【答案】B详解:,,,可得,故选B.点睛:本题主要考查等差数列的定义与下标性质,意在考查对基本概念与基本性质掌握的熟练程度,属于简单题.4.与椭园共焦点且渐近线方程为的双曲线的标准方程为()A.B.C.D.【答案】D【解析】分析:由椭圆方程可得椭圆的焦点,从而可得双曲线的焦点,结合双曲线渐近线方程可求得,从而可得结果.详解:的焦点坐标为,双曲线焦点,可得,由渐近线方程为,得,,双曲线的标准方程为,故选D.点睛:求双曲线方程的一般步骤;①作判断:根
3、据条件判断椭圆的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程或;③找关系:根据已知条件,建立关于、、的方程组;④得方程:解方程组,将解代入所设方程,即为所求.5.已知互不相同的直线和平面,则下列命题正确的是()A.若与为异面直线,,则B.若.则C.若,则D.若.则【答案】C.【解析】分析:对于,可利用面面平行的判定定理进行判断;对于,可利用线面平行的判定定理进行判断;对于,可利用面面垂直的性质进行判断.详解:若与为异面直线,,则与平行或相交,错,排除;若,则与平行或异面,错,排除;若,则或相交,错,排除,故选C.点睛:本题主要考查线面平行的判定与性质、面面垂
4、直的性质及线面垂直的判定,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.6.执行下面的程序框图,若,则输出的=()A.5B.4C.3D.2【答案】A【解析】分析:模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的的值.详解:执行程序框图,输入,第一次循环,;第二次循环,;第三次循环,;第三次循环,;,退出循环,输出,故选A.点睛:本题主要考查程序框图的循环结构流程
5、图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.7.已知某几何体是一个平面将一正方体截去一部分后所得,该几何体三视图如图所示,则该几何体的表面积为()A.B.C.D.【答案】B【解析】分析:根据三视图,作出几何体的直观图,观察截得几何体的结构特征,利用正三角形与直角三角形面积公式以及正方形
6、面积公式计算即可.详解:由三视图可知正方体边长为,截去部分为三棱锥,作出几何体的直观图如图所示,故该几何体的表面积为:,故选B.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.8.设点满足约束条件,且,则这样的点共有()个A.12B.11C.10D.
7、9【答案】A【解析】分析:由约束条件画出可行域,根据可行域,利用,可逐一写出满足条件的点,从而可得结果.详解:画出表示的可行域,由图可知,满足,得,共有,,共个,故选A.点睛:本题主要考查利用二元一次不等式组所表示的平面区域解决线性规划的应用,数形结合思想的应用和运算求解能力,本题关键在于正确作出二元一次不等式组所表示的可行域和准确找出满足条件的点,属于中档题.9.动直线与圆交于点,则弦最短为()A.2B.C.6D.【答
此文档下载收益归作者所有