资源描述:
《chaotic communication systems an iterative learning perspective - mingxuan sun》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、2010InternationalConferenceonElectricalandControlEngineeringChaoticCommunicationSystems:AnIterativeLearningPerspectiveMingxuanSunCollegeofInformationEngineeringZhejiangUniversityofTechnologyHangzhou,310023,ChinaEmail:mxsun@zjut.edu.cnAbstractInthispaper,the
2、problemofchaoticsecurecom-overafinitetimeinterval.Inourproposedscheme,nonlinearmunicationisaddressedfromaniterativelearningperspective,chaoticmaskingisadoptedandthedifficultyintheinversionwheretheplaintextspansoverapre-specifiedfinite-timeinterval.computingisov
3、ercome.TheplaintextisassumedtobegivenInthecryptographicscheme,theplaintextismodulatedthroughoverapre-specifiedtimeinterval.Thelearningalgorithmuseschaoticparametermodulation,andthenchaoticallymaskedbyanonlinearmechanism.Anefficientlearningalgorithmisexploited
4、onlythetransmittedsignal,andtheplaintextcanberecoveredfordecryption,andthesufficientconvergenceconditionisderivedfromtheciphertextthroughlearning.Ontheotherhand,bywhichthelearninggaincanbechosen.Furthermore,twonosynchronizationoccurs.Theiterativelearningmeth
5、odisfundamentaltechniquesaregiveninordertoenhancesecurity.comparabletotheinversionsystembasedapproach[10].ourCasestudiesarecarriedouttodemonstratetheeffectivenessofproposedlearningalgorithmissimpleandneedsnotinversiontheproposedmethod.computing.Comparedwith
6、theexistingparameterestimationI.INTRODUCTIONalgorithms,I)ourproposedschemedoesnotassumethatAchaoticsystemexhibitsunpredictableandrandom-theparameterstobeestimatedareslowlytimevarying,orseemingbehavior.Nevertheless,itsstatevariablesaredifferentiable;andII)th
7、ePEconditionisnotrequiredforbounded,andevolvewithtimeinadeterministicmanner.ourscheme,butacheckableconvergenceconditionasanBecauseofthisreason,chaosisconsideredadesirableprop-alternativeisgivenforthelearninggainselection.ertyinpotentialapplicationinsecureco
8、mmunication.InII.CHAOTICCRYPTOSYSTEMtheapplicationofchaostocryptography,thedrive-responsesynchronizationmethodwassuggestedin[1],whichhasgoneIterativelearningoffersanefficienttoolforestimatingtime-throug