Robust fault detection using iterative learning observer for nonlinear systems

Robust fault detection using iterative learning observer for nonlinear systems

ID:40725100

大小:240.47 KB

页数:3页

时间:2019-08-06

Robust fault detection using iterative learning observer for nonlinear systems_第1页
Robust fault detection using iterative learning observer for nonlinear systems_第2页
Robust fault detection using iterative learning observer for nonlinear systems_第3页
资源描述:

《Robust fault detection using iterative learning observer for nonlinear systems》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Proceedingsofthe5*WorldCongressonIntelligentControlandAutomation,June15-19,2004,Hangzhou,P.R.ChinaRobustFaultDetectionUsingIterativeLearningObserverforNonlinearSystemsMaLilingWangJunzhengandWangShoukunDepartmentofAutomaticControl,SchoolofInformationScience&Tec

2、hnologyBeijingInstituteofTechnologyBeijing,100081,P.R.Chinamaliling@bit.edu.cnAbstract-Arobustfaultdetectionschemeforaclassofnonlinearsystemswithmodelinguncertaintyandinaccessible11.PROBLEMSTATEMENTANDPRELIMINARIESstateswaspresented.Onlytheinputsandoutputsofth

3、esystemConsideranonlinearsystemmodelgivenbelowcanbemeasured.Anonlineariterativelearningobserverwasutilizedtoproducetheresidualthatwasrobusttouncertainty.Thestabilityofthefaultdetectionschemeundercertaini=Ax+@(x,u)+d(t)assumptionswasanalyzed.Anexampledemonstrat

4、esthey=cxefficiencyoftheproposedfaultdetectionstrategy.wherex(t)ER"istheimmeasurablestatevector,u(t)istheIndexTerms-faultdetection,observer,robustness,iterativemeasurableinputvector,andy(t)isthemeasurableoutputlearning,nonlinearsystemvector.@(x,u)andd(t)repres

5、entaLipschitznonlinearI.INTRODUCTIONfunctionandthemodelinguncertainty,respectively.AandCareconstantmatrices.d(r)denotestheeffectofthenon-faultfactorsonthesystem,suchasmodelingerrors,extemalThegrowingneedforfaultdetection(FD)incomplexdisturbancesanduncertaibtie

6、s.d(t)istheunknowninputsystemssuchasautomotive,manufacturingandrobots,hasvectorgeneratedagreatdealofresearchstudiesinthisarea,asin[1,Theobjectiveofthispaperistodeveloparobust2,31.Observer-basedFDmethodologyisoneofthemostnonlinearfaultdetectionarchitecturebased

7、onthesystemcommonlyusedFDstrategies,asin[4,5,61.Allmodel-basedmodeldescribedby(1)and(2).Throughoutthepaperwemethodsuseamodelofthemonitoredsystemtoproducethemakethefollowingassumptions:so-calledsymptomgenerator.IfthesystemisnotcomplexandA1d(t)anditsderivativear

8、ebounded,i.e.,canbedescribedaccuratelybythemathematicalmodel,FDisdirectlyperformedbyusingasimplegeometricalanalysisofresiduals.Inrealindustrialsystemshowever,themodelingerror,unkno

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。