特征向量的几何意义

特征向量的几何意义

ID:13996930

大小:42.00 KB

页数:12页

时间:2018-07-25

特征向量的几何意义_第1页
特征向量的几何意义_第2页
特征向量的几何意义_第3页
特征向量的几何意义_第4页
特征向量的几何意义_第5页
资源描述:

《特征向量的几何意义》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、特征向量的几何意义长时间以来一直不了解矩阵的特征值和特征向量到底有何意义(估计很多兄弟有同样感受)。知道它的数学公式,但却找不出它的几何含义,教科书里没有真正地把这一概念从各种角度实例化地进行讲解,只是一天到晚地列公式玩理论——有个屁用啊。根据特征向量数学公式定义,矩阵乘以一个向量的结果仍是同维数的一个向量,因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,那么变换的效果是什么呢?这当然与方阵的构造有密切关系,比如可以取适当的二维方阵,使得这个变换的效果就是将平面上的二维向量逆时针旋转30度,

2、这时我们可以问一个问题,有没有向量在这个变换下不改变方向呢?可以想一下,除了零向量,没有其他向量可以在平面上旋转30度而不改变方向的,所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能是零向量),所以一个特定的变换特征向量是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已(再想想特征向量的原始定义Ax=cx,cx是方阵A对向量x进行变换后的结果,但显然cx和x的方向相同)。这里给出一个特征向量的简单例子,比如平面上的一个变换,把一个向量关于横轴做镜像对称变

3、换,即保持一个向量的横坐标不变,但纵坐标取相反数,把这个变换表示为矩阵就是[10;0-1](分号表示换行),显然[10;0-1]*[ab]'=[a-b]'(上标'表示取转置),这正是我们想要的效果,那么现在可以猜一下了,这个矩阵的特征向量是什么?想想什么向量在这个变换下保持方向不变,显然,横轴上的向量在这个变换下保持方向不变(记住这个变换是镜像对称变换,那镜子表面上(横轴上)的向量当然不会变化),所以可以直接猜测其特征向量是[a0]'(a不为0),还有其他的吗?有,那就是纵轴上的向量,这时经过变换后,其方向

4、反向,但仍在同一条轴上,所以也被认为是方向没有变化,所以[0b]'(b不为0)也是其特征向量。综上,特征值只不过反映了特征向量在变换时的伸缩倍数而已,对一个变换而言,特征向量指明的方向才是很重要的,特征值似乎不是那么重要;但是,当我们引用了Spectraltheorem(谱定律)的时候,情况就不一样了。Spectraltheorem的核心内容如下:一个线性变换(用矩阵乘法表示)可表示为它的所有的特征向量的一个线性组合,其中的线性系数就是每一个向量对应的特征值,写成公式就是: 从这里我们可以看出,一个变换(矩

5、阵)可由它的所有特征向量完全表示,而每一个向量所对应的特征值,就代表了矩阵在这一向量上的贡献率——说的通俗一点就是能量(power),至此,特征值翻身做主人,彻底掌握了对特征向量的主动:你所能够代表这个矩阵的能量高低掌握在我手中,你还吊什么吊?我们知道,一个变换可由一个矩阵乘法表示,那么一个空间坐标系也可视作一个矩阵,而这个坐标系就可由这个矩阵的所有特征向量表示,用图来表示的话,可以想象就是一个空间张开的各个坐标角度,这一组向量可以完全表示一个矩阵表示的空间的“特征”,而他们的特征值就表示了各个角度上的能量

6、(可以想象成从各个角度上伸出的长短,越长的轴就越可以代表这个空间,它的“特征”就越强,或者说显性,而短轴自然就成了隐性特征),因此,通过特征向量/值可以完全描述某一几何空间这一特点,使得特征向量与特征值在几何(特别是空间几何)及其应用中得以发挥。关于特征向量(特别是特征值)的应用实在是太多太多,近的比如俺曾经提到过的PCA方法,选取特征值最高的k个特征向量来表示一个矩阵,从而达到降维分析+特征显示的方法;近的比如Google公司的成名作PageRank,也是通过计算一个用矩阵表示的图(这个图代表了整个Web

7、各个网页“节点”之间的关联)的特征向量来对每一个节点打“特征值”分;再比如很多人脸识别,数据流模式挖掘分析等方面,都有应用,有兴趣的兄弟可以参考IBM的Spiros在VLDB‘05,SIGMOD’06上的几篇文章。特征向量不仅在数学上,在物理,材料,力学等方面(应力、应变张量)都能一展拳脚,有老美曾在一本线代书里这样说过“有振动的地方就有特征值和特征向量”,确实令人肃然起敬+毛骨悚然......  转特征值物理含义:1.特征的数学意义]  我们先考察一种线性变化,例如x,y坐标系的椭圆方程可以写为x^2/a

8、^2+y^2/b^2=1,那么坐标系关于原点做旋转以后,椭圆方程就要发生变换。我们可以把原坐标系的(x,y)乘以一个矩阵,得到一个新的(x',y')的表示形式,写为算子的形式就是(x,y)*M=(x',y')。这里的矩阵M代表一种线性变换:拉伸,平移,旋转。那么,有没有什么样的线性变换b(b是一个向量),使得变换后的结果,看起来和让(x,y)*b像是一个数b乘以了一个数字m*b?换句话说,有没有这样的矢量b,使得

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。